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Abstract. Exhibiting a new type of measure concentration, we prove uniform
concentration bounds for measurable Lipschitz functions on product spaces, where
Lipschitz is taken with respect to the metric induced by a weighted covering of
the index set of the product. Our proof combines the Herbst argument with an
analogue of Shearer’s lemma for differential entropy. We give a quantitative “geo-
metric” classification of diffuse submeasures into elliptic, parabolic, and hyperbolic.
We prove that any non-elliptic submeasure (for example, any measure, or any
pathological submeasure) has a property that we call covering concentration. Our
results have strong consequences for the dynamics of the corresponding topological
L0-groups.

Contents

1. Introduction 1
2. Measure concentration and entropy 5
2.1. A review of measure concentration 5
2.2. The entropy method and the Herbst argument 7
3. Covering concentration 9
4. A classification of submeasures 15
5. Lévy nets from submeasures 24
6. Dynamical background 34
7. Topological groups of measurable maps 36
References 42

1. Introduction

The present paper makes contributions to three areas: the probabilistic theme of
concentration of measure in product spaces; the set theoretic and measure theoretic
theme of submeasures; and the topological dynamical theme of extreme amenability.
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Concentration of measure in products. We introduce a generalization of the Ham-
ming metric on product spaces and prove concentration of measure for it. (The
book [Led01] is a rich source of information on concentration of measure.) Gener-
alizations of the Hamming metric in the context of concentration of measure were
considered by Talagrand [Tal95, Tal96]. Our approach appears to be orthogonal
to Talagrand’s. We start with a sequence of sets C = (C0, . . . , Cm−1) covering
a non-empty set N together with a sequence of positive real numbers, weights,
w = (w0, . . . , wm−1). The sequences C and w will be the parameters determining the
metric. Given a family of sets Ωj , j ∈ N , we define a metric dC,w on

∏
j∈N Ωj as

follows: for two points x = (x0, . . . , xm−1) and y = (y0, . . . , ym−1) in the product, let

dC,w(x, y) := infI
∑

i∈I
wi,

where I runs over all I ⊆ {0, . . . ,m− 1} with

{j ∈ N | xj 6= yj} ⊆
⋃

i∈I
Ci.

Note that if the sets Ci, i < m, form a partition of N into one-element sets (so
m = |N |) and wi = 1/|N | for each i < m, then dC,w coincides with the normalized
Hamming metric.

We prove a concentration of measure theorem in product spaces for the above
metric dC,w. Our interest in such a concentration of measure theorem comes from
applications in topological dynamics in proving extreme amenability of certain Polish
groups. To state the concentration of measure theorem, we extract a natural number
k from the sequence C; we call C a k-cover of N if each element of N belongs to
at least k entries of the sequence C. We consider now a family of standard Borel
probability spaces indexed by the set N : (Ωj , µj)j∈N . Let P be the product measure
on
∏
j∈N Ωj . Assuming that C is a k-cover of N , we prove in Theorem 3.11 that for

each measurable function f :
∏
j∈N Ωj → R that is 1-Lipschitz with respect to dC,w

and for every r ∈ R>0,

P({x | f(x)− EP(f) ≥ r}) ≤ exp
(
− kr2

4
∑
i<m w2

i

)
.

The advancement consists of the presence of k in the exponent on the right-hand
side of the above inequality. Our proof of concentration of measure uses the entropy
method developed by Ledoux [Led95, Led96, Led99] building on the so-called Herbst
argument, which originates in an unpublished letter by Herbst to Gross. The second
main ingredient of our proof is a result by Madiman–Tetali [MT10, Corollary VIII]
(Lemma 3.8 in the present paper), which relates differential entropy on product
spaces with covering numbers of covers of the underlying index sets and in turn
constitutes an analogue of Shearer’s lemma for Shannon entropy of discrete random
variables [CGFS86, Section V, page 33, item (22)]. For a broader background on
concentration of measure, the reader may consult [Led01].

Submeasures as pseudo-metrics. A real-valued function φ on a Boolean algebra A
is a submeasure if it is subadditive, monotone with respect to the natural ordering
of A, and assigns the value 0 to the zero element of A. For some background on
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submeasures the reader may consult, for example, the papers [HC75, KR83, Sol99,
Tod04, Tal80, Tal08]. For concreteness, let us make use of Stone’s representation
theorem for Boolean algebras [Sto36] and assume that A is a Boolean algebra of
subsets of some set X. A submeasure can be viewed as a metric, or a pseudo-metric,
on an algebra of sets that respects the structure of the algebra, namely, φ induces a
pseudo-metric on A by the formula

dφ(A,B) := φ((A \B) ∪ (B \A)). (1)

Of course, dφ is a metric precisely when φ is strictly positive on non-empty sets in
A. Seeing submeasures as pseudo-metrics yields connections between submeasures
and nets of mm-spaces, on the one hand, and submeasures and Polish topological
groups, on the other, which, in turn, connects the concentration of measure result
above with extreme amenability of certain Polish groups. Before we explain these
relationships, we describe our classification of submeasures, which will be important
in our considerations.

Classification of submeasures. With each submeasure φ defined on a Boolean
algebra A of subsets of a set X, we associate a function hφ : R>0 → R>0, whose
value at ξ > 0 measures how thickly, relative to ξ, the family of elements of A with
submeasure not exceeding ξ covers the underlying set X. More precisely, we consider
the covering number of a family of sets as introduced by Kelley [Kel59]: for a family
B of subsets of X, the covering number of B is the supremum of the ratios

max{k | |{i < n | x ∈ Bi}| ≥ k for each x ∈ X}
n

,

where (B0, . . . , Bn−1) varies over all sequence of elements of B with n ≥ 1. Now,
hφ(ξ) is defined to be equal to the covering number of the family

Aφ,ξ := {A ∈ A | φ(A) ≤ ξ}
divided by ξ. In Theorem 4.7, we show that the asymptotic behavior of hφ at 0 is
rather restricted, for example, the quantity hφ(ξ) tends to a limit, possibly infinite,
as ξ tends to 0. A key point in this proof is Lemma 4.10, which is analogous to
certain convergence results on subadditive sequences, but appears not to be derivable
from these results. We classify submeasures into hyperbolic, parabolic, and elliptic
according to the asymptotic behavior of hφ; using Landau’s big O notation, the
submeasure φ is hyperbolic if 1

hφ(ξ) = O(ξ) as ξ → 0, elliptic if hφ(ξ) = O(ξ) as
ξ → 0, and parabolic otherwise. In Theorem 4.7, we relate this classification to the
two well-studied classes of submeasures: measures and pathological submeasures.
In particular, using a result of Christensen [Chr78], we show that a submeasure is
hyperbolic precisely when it is pathological. (Recall that a submeasure that is additive
on pairs of disjoint sets is called a measure; a submeasure is called pathological if it
does not have a non-zero measure below it.)

Submeasures as functors from probability spaces to nets of mm-spaces. An mm-
space, or a metric measure space, is a standard Borel space equipped with a probability
measure and a pseudo-metric that are compatible with each other. Assume we have
a submeasure φ defined on an algebra A of subsets of some set X. The family of all
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partitions of the underlying set X into sets in A with the relation of refinement forms
a directed partial order. Given a standard Borel probability space (Ω, µ), we associate
with each such partition B an mm-space by equipping the product space ΩB of all
function from B to Ω with the product measure arising from µ and a pseudo-metric
δφ,B that naturally extends formula (1) by setting

δφ,B(x, y) := φ
(⋃
{B ∈ B | x(B) 6= y(B)}

)
.

This procedure associates with φ a net of mm-spaces indexed by finite partitions of X
into elements of A. A natural question arises whether the nets of mm-spaces obtained
this way are Lévy, that is, whether they exhibit concentration of measure. Using our
concentration of measure result, we prove in Theorem 5.6 that the nets of mm-spaces
associated with hyperbolic and parabolic submeasures are Lévy. On the other hand,
in Example 5.7, we exhibit an elliptic submeasure such that the net of mm-spaces
associated with it is not Lévy, showing that Theorem 5.6 is essentially sharp.

Submeasures as functors from topological groups to topological groups. Given a
topological group G, we consider the topological group L0(φ,G) of all functions f
from X to G that are constant on the elements of a finite partition B ⊆ A of X, with
B depending on f . The group L0(φ,G) is equipped with pointwise multiplication.
The topology on it is defined again by extending formula (1). Given ε > 0 and a
neighborhood U of the neutral element in G, a basic neighborhood of f ∈ L0(φ,G)
in L0(φ,G) consists of all g ∈ L0(φ,G) such that

φ({x ∈ X | g(x) 6∈ Uf(x)}) < ε.

A construction of this type was first carried out by Hartman–Mycielski [HM58], in
the case of φ being a measure, and by Herer–Christensen [HC75], in the case of
a general submeasure. We ask when L0(φ,G) is extremely amenable, that is, for
what φ and G, does each continuous actions of L0(φ,G) on a compact Hausdorff
space have a fixed point? Results pertaining to this questions were obtained by
Herer–Christensen [HC75], Glasner [Gla98], Pestov [Pes02], Farah–Solecki [FS08],
Sabok [Sab12], and Pestov–Schneider [PS17]. For a broader background on extreme
amenability the reader may consult [Pes06]. Our classification of submeasures plays
a role here, too. In Theorem 7.5, we connect covering concentration of submeasures φ
and extreme amenability of groups L0(φ,G) for amenable G. Using this theorem
and our result on Lévy nets described above, we show in Corollary 7.6 that if φ is
hyperbolic or parabolic and G is amenable, then L0(φ,G) is extremely amenable, in
fact, it is even whirly amenable. This gives a common strengthening of the results
from [HC75, Gla98, Pes02, PS17] and also of a large portion of the results from
[FS08, Sab12]. In the other direction, by extending an argument from [PS17], we
show in Proposition 7.7 that if φ is parabolic or elliptic and G is not amenable, then
L0(φ,G) is not extremely amenable, in fact, it is not even amenable.
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2. Measure concentration and entropy

The purpose of this preliminary section is to provide the background material
necessary for stating and proving the results of Section 3. This will include both a
quick review of generalities concerning concentration of measure (Section 2.1) and a
discussion of a specific information-theoretic method for establishing concentration
inequalities (Section 2.2).

2.1. A review of measure concentration. Let us briefly recall some of the general
background concerning the phenomenon of measure concentration [Lév22, Mil67,
MS86, GM83]. For more details, the reader is referred to [Led01, Mas07]. For a start,
let us clarify some pieces of notation. If (X, d) is a pseudo-metric space, then, for
any A ⊆ X and ε ∈ R>0, we let

Bd(A, ε) := {x ∈ X | ∃a ∈ A : d(a, x) < ε}.

Let us note that, if X is a standard Borel space and d : X × X → R is a Borel
measurable pseudo-metric on X, then for any Borel measurable A ⊆ X and ε ∈ R>0,
the set Bd(A, ε) is µ-measurable for every probability measure µ on X; see [Cra02,
Theorem 2.12].

From this point on, when talking about subsets of a standard Borel space or
functions on such a space, we will say measurable for Borel measurable and use
µ-measurable if we mean measurability with respect to a measure µ.

Definition 2.1. Let (X, d, µ) be a metric measure space, that is, X is a standard
Borel space, d is a measurable pseudo-metric on X, and µ is a probability measure
on X. The mapping α(X,d,µ) : R>0 → [0, 1] defined by

α(X,d,µ)(ε) := 1− inf
{
µ(Bd(A, ε))

∣∣A ⊆ X measurable, µ(A) ≥ 1
2

}
is called the concentration function of (X, d, µ). A net (Xi, di, µi)i∈I of metric measure
spaces is said to be a Lévy net if, for every family of measurable sets Ai ⊆ Xi (i ∈ I),

lim infi∈I µi(Ai) > 0 =⇒ ∀ε ∈ R>0 : limi∈I µi(Bdi(Ai, ε)) = 1.

Let us recollect some basic facts about concentration. Given two measurable
spaces S and T as well as a measure µ on S, the push-forward measure of µ along a
measurable map f : S → T will be denoted by f∗(µ), that is, f∗(µ) is the measure on
T defined by f∗(µ)(B) := µ(f−1(B)) for every measurable subset B ⊆ T .

Remark 2.2. The following hold.
(1) For every metric measure space (X, d, µ), the map α(X,d,µ) : R>0 → [0, 1] is

monotonically decreasing.
(2) Let (X0, d0, µ0) and (X1, d1, µ1) be metric measure spaces. If there exists a

measurable 1-Lipschitz map f : (X0, d0)→ (X1, d1) with f∗(µ0) = µ1, then

α(X1,d1,µ1) ≤ α(X0,d0,µ0)

(see [Pes06, Lemma 2.2.5]).
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(3) A net (Xi, di, µi)i∈I of metric measure spaces is a Lévy net if and only if

limi∈I α(Xi,di,µi)(ε) = 0

for every ε ∈ R>0 (see [Pes06, Remark 1.3.3]).

In this work, we deduce concrete estimates for concentration functions of a large
family of metric measure spaces by bounding the measure-theoretic entropy of their
1-Lipschitz functions. Fundamental to this approach is the following elementary
observation, where we let Eµ(f) :=

∫
f dµ for a probability space (X,µ) and a

µ-integrable function f : X → R.

Proposition 2.3 ([Led01], Proposition 1.7). Let (X, d, µ) be a metric measure space
and consider any function α : R>0 → R≥0. Suppose that, for every bounded measurable
1-Lipschitz function f : (X, d)→ R and every r ∈ R>0,

µ({x ∈ X | f(x)− Eµ(f) ≥ r}) ≤ α(r).

Then α(X,d,µ)(r) ≤ α
(
r
2

)
for all r ∈ R>0.

The concentration results to be proved in Section 3 will be shown to have interesting
applications in topological dynamics (see Section 7). As this will require us to connect
concentration of measure with the study of general topological groups, we conclude this
section by briefly recollecting and commenting on the concept of measure concentration
in uniform spaces, as introduced by Pestov [Pes02, Definition 2.6]. To clarify some
terminology, let X be a uniform space, in the usual sense of Bourbaki [Bou66,
Chapter II]. An entourage U of X will be called open if U constitutes an open subset
of X ×X with respect to the product topology generated from the topology induced
by the uniformity of X (see [Bou66, Chapter II, §1.2] for details). It is easy to see
that, for any open entourage U of X and any subset A ⊆ X,

U [A] := {y ∈ X | ∃x ∈ A : (x, y) ∈ U}

is an open (in particular, Borel measurable) subset of X. Moreover, let us recall that
the collection of all open entourages of X forms a fundamental system of entourages of
X, that is, a filter base of the uniformity of X ([Bou66, Chapter II, §1.2, Corollary 2]).

Definition 2.4 ([Pes02], Definition 2.6). Let X be a uniform space. A net (µi)i∈I of
Borel probability measures on X is said to concentrate in X (or called a Lévy net in
X) if, for every family (Ai)i∈I of Borel subsets of X and any open entourage U of X,

lim infi∈I µi(Ai) > 0 =⇒ limi∈I µi(U [Ai]) = 1.

Remark 2.5 ([GM83], 2.1; [Pes02], Lemma 2.7). Let (Xi, di, µi)i∈I be a Lévy net of
metric measure spaces, let Y be a uniform space, and let fi : Xi → Y for each i ∈ I.
If the family (fi)i∈I is uniformly equicontinuous, that is, for every entourage U of Y
there exists ε ∈ R>0 such that

∀i ∈ I ∀x, y ∈ Xi : di(x, y) ≤ ε =⇒ (fi(x), fi(y)) ∈ U,

then the net ((fi)∗(µi))i∈I concentrates in X.
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2.2. The entropy method and the Herbst argument. The idea of applying
information-theoretic arguments to derive concentration inequalities has its origin
in the pioneering work of Marton [Mar86, Mar96] and Ledoux [Led95, Led96]. The
presentation here will focus on the so-called Herbst argument developed by Ledoux
building on an idea of Herbst. For a comprehensive introduction to this method, the
reader is referred to [Mas07, Section 1.2.3]. We start off with a definition.

Definition 2.6 ([Mas07], Definition 2.11; or [Led01], page 91). Let (Ω, µ) be a
probability space and let f : Ω→ R≥0 be µ-integrable. The entropy of f with respect
to µ is defined as

Entµ(f) :=

∫
f(x) ln f(x) dµ(x)−

(∫
f(x) dµ(x)

)
ln

(∫
f(x) dµ(x)

)
.

For an arbitrary probability space (Ω, µ) and a µ-integrable function f : Ω→ R≥0

with Eµ(f) > 0, the quantity Entµ(f) coincides, up to a normalizing constant, with
the Kullback–Leibler divergence or relative entropy of the probability measure ν with
respect to µ, where ν(A) := 1

Eµ(f)

∫
A f dµ for every measurable subset A ⊆ Ω. For

more details on relative entropy, we refer to [MT10, Section IX].
We recall the following dual characterization of entropy, where R := R∪ {−∞,∞}.

Proposition 2.7 ([Mas07], Proposition 2.12; or [Led01], page 98). Let (Ω, µ) be a
probability space and let f : Ω→ R≥0 be µ-integrable. Then

Entµ(f) = sup

{∫
gf dµ

∣∣∣∣ g : Ω→ R measurable,
∫

exp ◦g dµ ≤ 1

}
.

We note a slight variation of Proposition 2.7.

Corollary 2.8. Let (Ω, µ) be a probability space and let f : Ω→ R≥0 be µ-integrable.
Then

Entµ(f) = sup

{∫
gf dµ

∣∣∣∣ g : Ω→ R measurable,
∫

exp ◦g dµ ≤ 1

}
.

Proof. Clearly, if
∫
f dµ = 0, then Entµ(f) = 0 and f(x) = 0 for µ-almost every x ∈ Ω,

so that the desired equality holds trivially. Therefore, we may and will assume that
α :=

∫
f dµ > 0. Moreover, thanks to Proposition 2.7, it suffices to verify that

Entµ(f) ≤ sup

{∫
gf dµ

∣∣∣∣ g : Ω→ R measurable,
∫

exp ◦g dµ ≤ 1

}
. (2)

For this, let ε ∈ R>0. Put β := µ(B) for the measurable set B := {x ∈ Ω | f(x) = 0}.
Choose any δ ∈ R>0 with αδ ≤ ε and then n ∈ N such that exp(−n) ≤ 1− exp(−δ).
Consider the measurable function g : Ω→ R defined by

g(x) :=

{
ln f(x)− lnα− δ if x ∈ Ω \B,
−n otherwise
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for all x ∈ Ω. We observe that∫
exp ◦g dµ = exp(−δ)α−1

∫
Ω\B

f dµ+ exp(−n)β ≤ exp(−δ) + exp(−n) ≤ 1

and∫
fg dµ =

∫
f(x)(ln f(x)− lnα− δ) dµ(x)

=

∫
f(x) ln f(x) dµ(x)− α lnα− αδ = Entµ(f)− αδ ≥ Entµ(f)− ε.

This proves (2) and hence completes the argument. �

When estimating entropy in Section 3, we will moreover make use of the following.

Lemma 2.9 ([Led01], Corollary 5.8). Let (Ω, µ) be a probability space and f : Ω→ R
be µ-integrable. Then

Entµ(exp ◦f) ≤
∫ ∫

f(x)≥f(y)
(f(x)− f(y))2 exp(f(x)) dµ(y) dµ(x).

Proof. Applying Jensen’s inequality and Fubini’s theorem, we see that

Entµ(exp ◦f) =

∫
f(x) exp(f(x)) dµ(x)− Eµ(exp ◦f) lnEµ(exp ◦f)

≤
∫
f(x) exp(f(x)) dµ(x)−

(∫
exp(f(x)) dµ(x)

)(∫
f(x) dµ(x)

)
=

1

2

∫ ∫
(f(x)− f(y))(exp(f(x))− exp(f(y))) dµ(y) dµ(x)

=

∫
f(x)≥f(y)

(f(x)− f(y))(exp(f(x))− exp(f(y))) d(µ⊗ µ)(x, y).

Furthermore, a straightforward application of the mean value theorem shows that, if
a, b ∈ R and a ≥ b, then exp(a)− exp(b) ≤ exp(a)(a− b), thus

(a− b)(exp(a)− exp(b)) ≤ (a− b)2 exp(a).

Combining this inequality with Fubini’s theorem, we conclude that

Entµ(exp ◦f) ≤
∫
f(x)≥f(y)

(f(x)− f(y))2 exp(f(x)) d(µ⊗ µ)(x, y)

=

∫ ∫
f(x)≥f(y)

(f(x)− f(y))2 exp(f(x)) dµ(y) dµ(x). �

Our interest in entropy is due to the following fact, known as the Herbst argument.

Proposition 2.10 (Herbst argument, [Mas07], Proposition 2.14). Let (Ω, µ) be a
probability space, let f : Ω→ R be µ-integrable, and let D ∈ R>0. Suppose that, for
each λ ∈ R>0,

Entµ(exp ◦(λf)) ≤ 1
2λ

2D

∫
exp ◦(λf) dµ.
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Then, for each λ ∈ R>0,∫
exp(λ(f(x)− Eµ(f))) dµ(x) ≤ exp

(
1
2λ

2D
)
.

The Herbst argument provides a technique for proving concentration of measure,
via combining it with Proposition 2.3 and the following well-known fact.

Proposition 2.11. Let (Ω, µ) be a probability space, let f : Ω→ R be µ-integrable,
and let D ∈ R>0. Suppose that for each λ ∈ R>0∫

exp(λ(f(x)− Eµ(f))) dµ(x) ≤ exp
(

1
2λ

2D
)
.

Then, for each r ∈ R>0,

µ({x ∈ Ω | f(x)− Eµ(f) ≥ r}) ≤ exp
(
− r2

2D

)
.

Proof. Let r ∈ R>0. By Markov’s inequality, our hypothesis implies that

µ({x ∈ Ω | f(x)− Eµ(f) ≥ r}) = µ({x ∈ Ω | exp(λ(f(x)− Eµ(f))) ≥ exp(λr)})

≤ exp(−λr)
∫

exp(λ(f(x)− Eµ(f))) dµ(x) ≤ exp
(

1
2λ

2D − λr
)

for every λ ∈ R>0. Choosing λ := r
D , we conclude that

µ({x ∈ Ω | f(x)− Eµ(f) ≥ r}) ≤ exp
(

1
2

(
r
D

)2
D −

(
r
D

)
r
)

= exp
(
− r2

2D

)
. �

3. Covering concentration

In this section, we prove concentration of measure for a new class of metric
measure spaces, namely for products of probability spaces equipped with a pseudo-
metric naturally arising from any weighted covering of the underlying index set
(Theorem 3.11 and Corollary 3.12). In addition to the tools outlined in Section 2.2,
the main technical ingredient is given by Lemma 3.8 below. Our concentration
inequalities will be formulated in terms of Kelley’s covering number [Kel59] – a
concept we recall in Definition 3.3. For convenience in later considerations, we choose
an abstract approach via Boolean algebras. The more concrete situation for covers of
sets will be clarified in Definition 3.6 and Remark 3.7. For a start, we set up some
notation concerning finite partitions of unity in Boolean algebras.

Definition 3.1. Let A be a Boolean algebra. A finite partition of unity in A is a
finite subset B ⊆ A \ {0} such that

—
∨
B = 1, and

— A ∧B = 0 for any two distinct A,B ∈ B.
Denote by Π(A) the set of all finite partitions of unity in A. For any B, C ∈ Π(A),

C � B :⇐⇒ ∀B ∈ B ∃C ∈ C : B ⊆ C .
Moreover, for any finite subset B ⊆ A, let

〈B〉A :=

{(∧
B0

)
∧
(∧

B∈B\B0
¬B
) ∣∣∣∣B0 ⊆ B

}
\ {0} .
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Remark 3.2. Let A be a Boolean algebra. If B is a finite subset of A, then 〈B〉A is
a finite partition of unity in A.

We proceed to the definition of Kelley’s covering number [Kel59].

Definition 3.3. Let A be a Boolean algebra. Let m ∈ N≥1 and C = (Ci)i<m ∈ Am.
We define 〈C〉A := 〈{Ci | i < m}〉A and call

tA(C) := sup{k ∈ N | ∀B ∈ 〈C〉A : |{i < m | B ≤ Ci}| ≥ k}
the covering multiplicity of C in A. Let k ∈ N≥1. Then C is said to be

— a k-cover in A if tA(C) ≥ k,
— a cover in A if C a 1-cover in A, and
— uniform (in A) if |{i < m | B ≤ Ci}| = tA(C) for every B ∈ 〈C〉A.

The covering number of a subset B ⊆ A is defined to be

cA(B) := sup
{
tA((Bi)i<n)

n

∣∣∣n ∈ N≥1, (Bi)i<n ∈ Bn
}
.

The definition above is stable under partition refinement in the following sense.

Remark 3.4. Let A be a Boolean algebra. Let m ∈ N≥1 and C = (Ci)i<m ∈ Am.
Consider any B ∈ Π(A) with 〈C〉A � B. Then

tA(C) = sup{k ∈ N | ∀B ∈ B : |{i < m | B ≤ Ci}| ≥ k} .
Moreover, C is uniform in A if and only if |{i < m | B ≤ Ci}| = tA(C) for each B ∈ B.

Furthermore, let us point out the following simple, but useful observation about
uniform refinements of covers.

Lemma 3.5. Let A be a Boolean algebra. Let m ∈ N≥1 and let C = (Ci)i<m ∈ Am
be a cover in A. Then there exists a uniform tA(C)-cover C∗ = (C∗i )i<m ∈ Am in A
such that C∗i ≤ Ci for each i < m.

Proof. Let k := tA(C) and let us denote by Pk(m) the set of all k-element subsets of
{0, . . . ,m − 1}. Consider B := 〈{Ci | i < m}〉A ∈ Π(A). Since C is a k-cover in A,
there exists a map π : B → Pk(m) such that

∀B ∈ B ∀i ∈ π(B) : B ≤ Ci .

For each i < m, let C∗i :=
∨
{B ∈ B | i ∈ π(B)}. Clearly, C∗ := (C∗i )i<m ∈ Am and

C∗i ≤ Ci whenever i < m. Since B is a partition of unity in A, the definition of C∗
moreover entails that

|{i < m | B ≤ C∗i }| = |π(B)| = k

for each B ∈ B. According to Remark 3.4, as 〈C∗〉A � B, this implies that C∗ is a
uniform k-cover in A. �

We are going to clarify the concepts introduced above in the concrete setting of set
covers. Given a set X, let us denote by P(X) the power set of X, which constitutes
a Boolean algebra with respect to the usual set-theoretic operations.

Definition 3.6. Let X be a set, k,m ∈ N≥1. A sequence C ∈ P(X)m is called
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— a k-cover of X if C is a k-cover in P(X),
— a cover of X if C is a cover in P(X), and
— uniform (over X) if C is uniform in P(X).

Of course, a finite sequence of subsets of a set X constitutes a cover of X in the
sense of Definition 3.6 if and only if its union coincides with X. Let us mention some
additional elementary observations.

Remarks 3.7. (1) Let X be a set and let C = (Ci)i<m ∈ P(X)m with m ∈ N≥1.
Then

tP(X)(C) = sup{k ∈ N | ∀x ∈ X : |{i < m | x ∈ Ci}| ≥ k} .
Furthermore, the sequence C is uniform over X if and only if, for every x ∈ X,

|{i < m | x ∈ Ci}| = tP(X)(C) .
(2) Let A be a Boolean algebra. Let k,m ∈ N≥ and let C = (Ci)i<m ∈ A. Consider

any B ∈ Π(A) with 〈C〉A � B. Then C is a (uniform) k-cover in A if and only if the
sequence ({B ∈ B | B ≤ Ci})i<m ∈ P(B) is a (uniform) k-cover of the set B.

Let us now proceed to an analogue of Shearer’s lemma [CGFS86, p. 33, item (22)]
for differential entropy due to Madiman–Tetali [MT10, Corollary VIII], which simul-
taneously generalizes earlier work of Han [Han78]. This result (Lemma 3.8 below) was
proved by Madiman–Tetali extending an argument by Massart [Mas00, Section 2.1.1]
proving Han’s inequality for differential entropy. For the sake of convenience, we
will include another proof of Lemma 3.8, which is based on Ledoux’s proof of Han’s
inequality for differential entropy [Led01, Proposition 5.6].

To clarify some notation, let N be a finite set and let (Ωj)j∈N be a family of
measurable spaces. If x ∈

∏
j∈S Ωj and y ∈

∏
j∈T Ωj for disjoint subsets S, T ⊆ N ,

then we will write (x, y) for the unique element of
∏
j∈S∪T Ωj that projects to x

and y. Furthermore, if f :
∏
j∈N Ωj → R is a measurable function, then, for any

subset S ⊆ N and z ∈
∏
j∈N\S Ωj , the map

fz :
∏

j∈S
Ωj −→ R, x 7−→ f(x, z)

is measurable, too. (Note that S can be recovered from z, so there is no ambiguity
about the domain of fz.) Now, for each j ∈ N , let µj be a probability measure on Ωj .
Set µ := (µj)j∈N . Given a subset B ⊆ N , we consider the probability measure

PµB :=
⊗

j∈B
µj

on the measurable space
∏
j∈B Ωj . We set

Pµ := PµN .

With this notation, Fubini’s theorem states that, for every Pµ-integrable function
f :
∏
j∈N Ωj → R and every B ⊆ N , the map fz is PµB-integrable for PµN\B-almost

every z ∈
∏
j∈N\B Ωj , and∫

f dPµ =

∫ ∫
fz dP

µ
B dP

µ
N\B(z).



CONCENTRATION, CLASSIFICATION, AND DYNAMICS 12

By a standard Borel probability space, we mean a pair (Ω, µ) consisting of a standard
Borel space Ω and a probability measure µ on Ω.

Lemma 3.8 (Madiman–Tetali [MT10], Corollary VIII). Let N be a finite non-empty
set. Let k,m ∈ N≥1 and suppose that C = (Ci)i<m ∈ P(N)m is a uniform k-cover
of N . Consider any family of standard Borel probability spaces (Ωj , µj)j∈N and let
µ := (µj)j∈N . Then, for every bounded measurable function f :

∏
j∈N Ωj → R≥0,

EntPµ(f) ≤ 1

k

∑
i<m

∫
EntPµCi

(fz) dP
µ
N\Ci(z).

Proof. We include a proof for the sake of convenience. Without loss of generality, we
may assume that N = {0, . . . , n−1} for some n ∈ N≥1. We abbreviate X =

∏
j∈N Ωj ,

P := Pµ and PB := PµB for any B ⊆ N . We use Corollary 2.8. To this end, let
g : X → R be measurable such that

∫
exp ◦g dP ≤ 1. Since exp ◦g takes only positive

values,
∫

exp(g(y, x)) dP{0,...,j}(y) > 0 for all j ∈ N and x ∈
∏n−1
i=j+1 Ωi. Furthermore,

invoking Fubini’s theorem, we find some measurable subset S ⊆ X with P(S) = 1
such that

∫
exp
(
g
(
y, x�{j+1,...,n−1}

))
dP{0,...,j}(y) <∞ for all j ∈ N and x ∈ S. For

each j ∈ N , consider the measurable map gj : X → R given by

gj(x) := ln

(∫
exp
(
g
(
y, x�{j,...,n−1}

))
dP{0,...,j−1}(y)∫

exp
(
g
(
y, x�{j+1,...,n−1}

))
dP{0,...,j}(y)

)
for all x ∈ S and gj(x) := 0 for all x ∈ X \ S. Note that, by Fubini’s theorem, for
each j ∈ N and PN\{j}-almost every z ∈

∏
j′∈N\{j}Ωj′ ,∫

exp ◦gjz dµj =

∫ ∫
exp
(
g
(
y, x, z�{j+1,...,n−1}

))
dP{0,...,j−1}(y)∫

exp
(
g
(
y, z�{j+1,...,n−1}

))
dP{0,...,j}(y)

dµj(x) = 1. (3)

Given any non-empty subset B ⊆ N , define the measurable function

hB :=
∑

j∈B
gj : X −→ R.

Note that hB does not depend on the j-th coordinates with j < minB. We claim
that, for every non-empty B ⊆ N and PN\B-almost every z ∈

∏
j∈N\B Ωj ,∫

exp ◦hBz dPB = 1. (4)

The proof of (4) proceeds by induction. For a start, let B ⊆ N with |B| = 1, that is,
B = {j} for some j ∈ N . Then, for PN\B-almost every z ∈

∏
`∈N\B Ω`,∫

exp ◦hBz dPB =

∫
exp ◦gjz dµj

(3)
= 1.

For the inductive step, let B ⊆ N with |B| > 1 and suppose that (4) holds for
every non-empty proper subset of B. Denote by j the smallest element of B and
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let B′ := B \ {j}. Then there exists a measurable subset T ⊆
∏
`∈N\B′ Ω` with

PN\B′(T ) = 1 such that, for every z ∈ T ,

∫
exp ◦hB′z dPB′ = 1. (5)

Thanks to the Measurable Projection Theorem, see [Cra02, Theorem 2.12], the set
T ′ := {z�N\B | z ∈ T} is a PN\B-measurable subset of

∏
`∈N\B Ω`. For each z ∈ T ′,

there exists some ω ∈ Ωj =
∏
`∈{j}Ω` with (ω, z) ∈ T , so that Fubini’s theorem

yields that∫
exp ◦hBz dPB =

∫ (
exp ◦gjz

)(
exp ◦hB′z

)
d(µj ⊗ PB′)

=

∫ ∫ (
exp ◦gj(y,z)

)(
exp ◦hB′(y,z)

)
dµj dPB′(y)

=

∫ (∫
exp ◦gj(y,z) dµj

)
exp
(
hB
′

(ω,z)(y)
)
dPB′(y)

(3)
=

∫
exp
(
hB
′

(ω,z)(y)
)
dPB′(y)

(5)
= 1,

where the third equality follows from hB
′ not depending on the j-th coordinate. Since

PN\B(T ′) ≥ PN\B′(T ) = 1, this completes our induction and therefore proves (4).
Thanks to Proposition 2.7, our assertion (4) implies that, for every non-empty

B ⊆ N and PN\B-almost every z ∈
∏
j∈N\B Ωj ,

∫
hBz fz dPB ≤ EntPB (fz) . (6)

Furthermore, for each x ∈ S,

∑
j∈N

gj(x) =
∑

j∈N
ln

(∫
exp
(
g
(
y, x�{j,...,n−1}

))
dP{0,...,j−1}(y)

)
−
∑

j∈N
ln

(∫
exp
(
g
(
y, x�{j+1,...,n−1}

))
dP{0,...,j}(y)

)
= g(x)− ln

(∫
exp ◦g dP

)
≥ g(x)− ln(1) = g(x).

Since C is a uniform k-cover of N , this entails that∑
i<m

hCi(x) =
∑

i<m

∑
j∈Ci

gj(x) = k
∑

j∈N
gj(x) ≥ kg(x)
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for every x ∈ S, that is, g ≤ 1
k

∑
i<m h

Ci P-almost everywhere. Combining this with
Fubini’s theorem and (6), we conclude that∫

gf dP ≤ 1

k

∑
i<m

∫
hif dP =

1

k

∑
i<m

∫ ∫ (
hCif

)
z
dPCi dPN\Ci(z)

=
1

k

∑
i<m

∫ ∫
hCiz fz dPCi dPN\Ci(z)

(6)
≤ 1

k

∑
i<m

∫
EntPCi (fz) dPN\Ci(z).

By Proposition 2.7, the conclusion follows. �

Corollary 3.9. Let N be a finite non-empty set. Let k,m ∈ N≥1 and suppose that
C = (Ci)i<m ∈ P(N)m is a uniform k-cover of N . Consider any family of standard
Borel probability spaces (Ωj , µj)j∈N and let µ := (µj)j∈N . Then, for every bounded
measurable function f :

∏
j∈N Ωj → R,

EntPµ(exp ◦f) ≤ 1

k

∑
i<m

∫∫∫
fz(x)≥fz(y)

(fz(x)−fz(y))2 exp(fz(x)) dPµCi(y) dPµCi(x) dPµN\Ci(z).

Proof. This is an immediate consequence of Lemma 3.8 and Lemma 2.9. �

Next up, we introduce a pseudo-metric on the product of a family of sets naturally
associated with any weighted covering of the underlying index set.

Definition 3.10. Let N be a finite non-empty set. Let m ∈ N≥1 and suppose that
C = (Ci)i<m ∈ P(N)m is a cover of N . Moreover, let w = (wi)i<m be a sequence of
non-negative reals. For a family of sets (Ωj)j∈N , we define the pseudo-metric

dC,w :
∏

j∈N
Ωj ×

∏
j∈N

Ωj −→ R≥0

by setting

dC,w(x, y) := inf
{∑

i∈I
wi

∣∣∣ I ⊆ m, {j ∈ N | xj 6= yj} ⊆
⋃

i∈I
Ci

}
for all x, y ∈

∏
j∈N Ωj .

Now everything is prepared to state and prove our first main result.

Theorem 3.11. Let N be a finite non-empty set. Let k,m ∈ N≥1 and suppose that
C = (Ci)i<m ∈ P(N)m is a k-cover of N . Let w = (wi)i<m be a sequence of non-
negative reals. Consider any family of standard Borel probability spaces (Ωj , µj)j∈N
and set µ := (µj)j∈N . Let f :

∏
j∈N Ωj → R be measurable and 1-Lipschitz with

respect to dC,w. Then, for every r ∈ R>0,

Pµ
({
x ∈

∏
j∈N

Ωj

∣∣∣ f(x)− EPµ(f) ≥ r
})
≤ exp

(
− kr2

4‖w‖22

)
.

Proof. Of course, the desired statement holds trivially if w = 0. Therefore, we may
and will assume that w 6= 0. Due to Lemma 3.5, there exists a uniform k-cover
C∗ = (C∗i )i<m ∈ P(N)m of N such that C∗i ⊆ Ci for each i < m. Since f is 1-Lipschitz
with respect to dC,w,

|fz(x)− fz(y)| ≤ dC,w((x, z), (y, z)) ≤ wi
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whenever i < m, x, y ∈
∏
j∈C∗i

Ωj and z ∈
∏
j∈N\C∗i

Ωj . As the pseudo-metric dC,w is
bounded, f being 1-Lipschitz with respect to dC,w moreover implies that f is bounded.
By Corollary 3.9 and Fubini’s theorem, it follows that, for every λ ∈ R>0,

EntPµ(exp ◦(λf)) ≤ 1

k

∑
i<m

∫∫∫
fz(x)≥fz(y)

(λwi)
2 exp(λfz(x)) dPµC∗i

(y) dPµC∗i
(x) dPµN\C∗i

(z)

≤ 1

k

∑
i<m

(λwi)
2
∫ ∫

exp(λfz(x)) dPµC∗i
(x) dPµN\C∗i

(z)

=
1

k

∑
i<m

(λwi)
2
∫

exp ◦(λf) dPµ =
λ2‖w‖22

k

∫
exp ◦(λf) dPµ.

Using Proposition 2.10 and Proposition 2.11 with D :=
2‖w‖22
k gives the conclusion. �

Corollary 3.12. Let N be a finite non-empty set. Let k,m ∈ N≥1 and suppose that
C = (Ci)i<m ∈ P(N)m is a k-cover of N . Let w = (wi)i<m be a sequence of non-
negative reals. Consider any family of standard Borel probability spaces (Ωj , µj)j∈N .
Let X :=

∏
j∈N Ωj and P :=

⊗
j∈N µj. Then, for every r ∈ R>0,

α(X,dC,w,P)(r) ≤ exp
(
− kr2

8‖w‖22

)
.

Proof. This is an immediate consequence of Theorem 3.11 and Proposition 2.3. �

4. A classification of submeasures

Our objective in this section is to give a quantitative classification of diffuse
submeasures in terms of the asymptotics of weighted covering ratios (as detailed in
Definition 4.6 and Theorem 4.7). We start with recalling the notion of submeasure
and various standard definitions concerning this concept.

Definition 4.1. Let A be a Boolean algebra. A function φ : A → R is called a
submeasure if

— φ(0) = 0,
— φ is monotone, that is, φ(A) ≤ φ(B) for all A,B ∈ A with A ≤ B, and
— φ is subadditive, that is, φ(A ∨B) ≤ φ(A) + φ(B) for all A,B ∈ A.

Let φ : A → R be a submeasure. Then φ is called a measure if φ(A∨B) = φ(A)+µ(B)
for any two A,B ∈ A with A ∧ B = 0. The submeasure φ is called pathological if
there does not exist a non-zero measure µ : A → R with µ ≤ φ. Furthermore, φ is
said to be diffuse if, for every ε > 0, there exists a finite subset B ⊆ A such that∨
B = 1 and φ(B) ≤ ε for each B ∈ B.

Our classification of diffuse submeasures will be formulated in terms of the asymp-
totic behavior of a certain function associated with any such submeasure. The
definition of the function relies on the notion of covering number (Definition 3.3).
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Definition 4.2. Let A be a Boolean algebra and let φ : A → R be a diffuse submeas-
ure. For ξ ∈ R>0, let

Aφ,ξ := {A ∈ A | φ(A) ≤ ξ} .
Define hφ : R>0 → R>0 by

hφ(ξ) :=
cA(Aφ,ξ)

ξ = 1
ξ sup

{
tA(C)
m

∣∣∣m ∈ N≥1, C ∈ (Aφ,ξ)m
}
.

Clearly, for any diffuse submeasure φ : A → R, the function hφ is well defined, that
is, hφ only takes values in R>0. In the definition of hφ, the covering number cA(Aφ,ξ)
measures how thickly Aφ,ξ covers the unit 1 of the Boolean algebra A. This quantity
is then divided by a normalizing factor ξ to compensate for the fact that the elements
of Aφ,ξ become smaller as ξ approaches 0. (For an application in a different context
of the covering number of the family Aφ,ξ, see [Hru17].)

By Lemma 3.5, we have the following reformulation in terms of uniform covers.

Corollary 4.3. Let A be a Boolean algebra and let φ : A → R be a diffuse submeasure.
Then, for every ξ ∈ R>0,

hφ(ξ) = 1
ξ sup

{
tA(C)
m

∣∣∣m ∈ N≥1, C ∈ (Aφ,ξ)m uniform cover in A
}
.

Furthermore, an application of the Hahn–Banach extension theorem yields the
subsequent description, where 1

0
:=∞. For the proof of Proposition 4.4 and for the

statement of Theorem 4.8, we fix one more piece of notation: given two sets A ⊆ S,
let χA : S → {0, 1} denote the corresponding indicator function defined by χA(x) := 1
for all x ∈ A and χA(x) := 0 for all x ∈ S \A.

Proposition 4.4. Let A be a Boolean algebra and let φ : A → R be a diffuse sub-
measure. For every ξ ∈ R>0,

hφ(ξ) = min
{

1
µ(1)

∣∣∣µ : A → R measure with Aφ,ξ ⊆ Aµ,ξ
}
.

Proof. Let ξ ∈ R>0 be fixed.
(≤) Consider any measure µ : A → R with Aφ,ξ ⊆ Aµ,ξ. If C = (Ci)i<m ∈ (Aφ,ξ)m

for some m ∈ N≥1, then

tA(C)µ(1) ≤
∑

i<m
µ(Ci) ≤ mξ

and thus tA(C)
mξ ≤

1
µ(1) . Therefore, hφ(ξ) ≤ 1

µ(1) as desired.
(≥) Appealing to Stone’s representation theorem for Boolean algebras [Sto36], we

may and will assume that A is a Boolean subalgebra of P(S) for some set S. Consider
the seminorm p : `∞(S)→ R≥0 defined by

p(f) := inf
{
ξ
∑

i<m
ri

∣∣∣m ∈ N, (ri)i<m ∈ (R≥0)m, (Bi)i<m ∈ (Aφ,ξ)m,

|f | ≤
∑

i<m
riχBi

}
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for every f ∈ `∞(S). Since Q is dense in R, it follows that

p(χS) = inf
{
ξm
k

∣∣∣m, k ∈ N≥1, (Bi)i<m ∈ (Aφ,ξ)m, χS ≤ 1
k

∑
i<m

χBi

}
= hφ(ξ)−1.

Concerning the linear functional I : RχS → R, rχS 7→ rhφ(ξ)−1, we note that

|I(rχS)| =
∣∣rhφ(ξ)−1

∣∣ = |r|hφ(ξ)−1 = |r|p(χS) = p(rχS)

for all r ∈ R. Therefore, the Hahn–Banach extension theorem asserts the existence of
a linear functional J : `∞(S)→ R such that J(χS) = hφ(ξ)−1 and |J(f)| ≤ p(f) for
every f ∈ `∞(S). Let us define

µ : A −→ R, A 7−→ J(χA)

and observe that µ(∅) = 0 and µ(S) = hφ(ξ)−1, and moreover µ(A∪B) = µ(A)+µ(B)
for any two disjoint A,B ∈ A. Straightforward calculations now show that

µ+ : A −→ R≥0, A 7−→ sup{µ(B) | A ⊇ B ∈ A}

constitutes a measure (we refer to [RR83, Theorem 2.2.1(4)] for the details). Further-
more, since p(χB) ≤ p(χA) for any B ⊆ A ⊆ S, it follows that

µ+(A) = sup{J(χB) | A ⊇ B ∈ A} ≤ sup{p(χB) | A ⊇ B ∈ A} ≤ p(χA)

for every A ∈ A. Therefore, if A ∈ Aφ,ξ, then µ+(A) ≤ p(χA) ≤ ξ, hence A ∈ Aµ+,ξ.
Finally, let us observe that µ+(S) ≤ p(χS) = hφ(ξ)−1 = µ(S) ≤ µ+(S), which means
that µ+(S) = hφ(ξ)−1. This completes the proof. �

The asymptotic behavior of hφ(ξ) as ξ → 0 will be fundamental to our considera-
tions. As it turns out, this behavior is quite rigid, as partly indicated by the following
immediate consequence of points (i), (ii), and (iii) of Theorem 4.7, which is proved
later.

Corollary 4.5. Let φ be a diffuse submeasure. Then the limit limξ→0 hφ(ξ), possibly
infinite, exists.

Informed by the corollary above, in Definition 4.6, we divide the class of diffuse
submeasures according to their asymptotic behavior at 0. Our choice of this division
is further justified by its interactions with concentration of measure (see Theorem 5.6
Example 5.7) and dynamics of L0-groups (see Corollary 7.6, and Proposition 7.7).
We recall Landau’s big O notation: for two functions f, g : R>0 → R>0,

f(x) = O(g(x)) as x→ 0 :⇐⇒ lim supx→0
f(x)
g(x) < ∞.

Definition 4.6. A diffuse submeasure φ is called
— elliptic if hφ(ξ) = O(ξ) as ξ → 0,
— hyperbolic if 1

hφ(ξ) = O(ξ) as ξ → 0,
— parabolic if φ is neither elliptic, nor hyperbolic.
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Evidently, the three notions defined above are mutually exclusive. We note that a
diffuse submeasure φ is elliptic if and only if

supξ∈R>0

hφ(ξ)
ξ < ∞.

Clearly, the latter implies the former. Conversely, hφ(ξ)
ξ ≤ 1

ξ2
for all ξ ∈ R>0, so that

lim supξ→0
hφ(ξ)
ξ < ∞ =⇒ supξ∈R>0

hφ(ξ)
ξ < ∞.

The subsequent theorem is the main result of this section. It gives initial justification
to the importance of the function introduced in Definition 4.6.

Theorem 4.7. Let φ be a diffuse submeasure.
(i) φ is hyperbolic if and only if it is pathological, in which case limξ→0 ξhφ(ξ) = 1.
(ii) If φ is parabolic, then limξ→0 hφ(ξ) exists and is finite.
(iii) If φ is elliptic, then limξ→0 hφ(ξ) = 0.
(iv) If φ is a measure, then limξ→0 hφ(ξ) = 1

φ(1) , where
1
0 =∞.

Note that the obvious estimate hφ(ξ) ≤ 1/ξ and (ii) and (iii) of Theorem 4.7 imply
that φ is hyperbolic precisely when hφ is unbounded. Also, it follows immediately
from points (i), (ii), and (iv) that every non-zero diffuse measure is a parabolic
submeasure. Of course, a zero measure is hyperbolic. The converses to (ii) and (iii)
do not hold. A family of elliptic submeasures, the existence of which witnesses that
the implication in (ii) cannot be reversed, is constructed in Example 5.7. For an
example of a parabolic submeasure φ with limξ→0 hφ(ξ) = 0, illustrating the failure
of the converse to (iii), see Example 4.11.

We remark here that (i) in Theorem 4.7 is essentially a reformulation of the
following characterization of pathological submeasures due to Christensen [Chr78].

Theorem 4.8 ([Chr78], Theorem 5). Let S be a set and A be a Boolean subalgebra
of P(S). If φ : A → R is a pathological submeasure, then for every ξ ∈ R>0 there
exist m ∈ N≥1, C0, . . . , Cm−1 ∈ Aφ,ξ and a0, . . . , am−1 ∈ R≥0 such that

∑
i<m ai = 1

and
∑

i<m aiχCi ≥ 1− ξ.

Christensen’s Theorem 4.8 immediately entails the following corollary, which
constitutes the essential ingredient in the proof of (i) in Theorem 4.7.

Corollary 4.9. Let A be a Boolean algebra. If φ : A → R is a pathological submeasure,
then for every ξ ∈ R>0 there exist m ∈ N≥1 and C ∈ (Aφ,ξ)m such that tA(C)

m ≥ 1− ξ.

Proof. Again, thanks to Stone’s representation theorem for Boolean algebras [Sto36],
we may and will assume that A is a Boolean subalgebra of P(S) for some set S.
Consider any pathological submeasure φ : A → R and let ξ ∈ R>0. Since Q is dense
in R, Christensen’s Theorem 4.8 entails the existence of m, p0, . . . , pm−1, q ∈ N≥1 as
well as C0, . . . , Cm−1 ∈ Aφ,ξ such that

∑
i<m pi = q and

∑
i<m

pi
q χCi ≥ 1− ξ. Let us

consider the sequence C∗ := (C∗j )j<q ∈ Aq defined by setting

C∗k+
∑
i<` pi

:= Ci
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for any ` < m and k < p`. Then∑
j<q

χC∗j =
∑

i<m
piχCi ≥ (1− ξ)q ,

hence tA(C∗)
q ≥ 1− ξ as desired. �

The proof of (ii) in Theorem 4.7 relies on the following general convergence result.

Lemma 4.10. Let f : R>0 → R≥0. If supξ∈R>0

f(ξ)
ξ <∞ and, for all ξ, ζ ∈ R>0,

f(ξ + ζ) ≥ f(ξ) + f(ζ)− f(ξ)f(ζ),

then limζ→0
f(ζ)
ζ exists and is finite.

Proof. Let M := sup
{
f(ξ)
ξ

∣∣∣ ξ ∈ R>0

}
. For a start, we prove that

∀ξ ∈ R>0 ∀k ∈ N≥1 : f(kξ)
kξ ≥ f(ξ)

ξ −M
2kξ. (7)

Let ξ ∈ R>0. We prove the inequality by induction over k ∈ N≥1. Clearly, if k = 1,
then the desired statement holds trivially. Furthermore, if f(kξ)

kξ ≥ f(ξ)
ξ −M

2kξ for
some k ∈ N≥1, then

f((k + 1)ξ) ≥ f(kξ) + f(ξ)− f(kξ)f(ξ) ≥ f(kξ) + f(ξ)−M2ξ2k

≥ kf(ξ)−M2k2ξ2 + f(ξ)−M2ξ2k = (k + 1)f(ξ)−M2ξ2(k2 + k)

≥ (k + 1)f(ξ)−M2ξ2(k + 1)2,

that is, f((k+1)ξ)
(k+1)ξ ≥

f(ξ)
ξ −M

2ξ(k + 1). This completes our induction and therefore
proves (7).

Let L := lim supζ→0
f(ζ)
ζ . Clearly, L ≤M <∞. We prove that f(ξ)

ξ → L as ξ → 0.
Of course, this holds trivially if L = 0. So, assume that L > 0. Fix ε ∈ (0, L). It will
suffice to show that

ξ ∈
(

0, ε
2M2+1

)
=⇒ f(ξ)

ξ > (1− ε)(L− ε). (8)

By definition of L, there exists ζ ∈ (0, ξ) such that f(ζ)
ζ > L− ε

2 and bξ/ζc
bξ/ζc+1 > 1− ε.

Let k := bξ/ζc, so that ξ = kζ + r for some r ∈ [0, ζ). Note that kζ
kζ+r ≥

k
k+1 > 1− ε.

It follows that
f(ξ)
ξ ≥ 1

kζ+r (f(kζ) + f(r)− f(kζ)f(r)) ≥ kζ
kζ+r

(
f(kζ)
kζ −

f(kζ)
kζ f(r)

)
(7)
≥ kζ

kζ+r

((
f(ζ)
ζ −M

2kζ
)
−M2r

)
= kζ

kζ+r

(
f(ζ)
ζ −M

2ξ
)
> (1− ε)(L− ε).

This proves (8) and thus completes our proof. �

Proof of Theorem 4.7. Let φ be a diffuse submeasure on a Boolean algebra A.
(i) For a start, let us note that hφ(ξ) ≤ 1

ξ for every ξ ∈ R>0. Now, if φ is
pathological, then Corollary 4.9 yields that

hφ(ξ) ≥ 1−ξ
ξ
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for all ξ ∈ R>0, which therefore entails that ξhφ(ξ) −→ 1 as ξ → 0. The latter
condition clearly implies that φ is hyperbolic. Furthermore, if φ is hyperbolic, then
hφ must be unbounded. It only remains to argue that, if hφ is unbounded, then φ
will be pathological. To this end, let us assume that φ is non-pathological, that is,
there exists a measure µ : A → R with 0 6= µ ≤ φ. Then Proposition 4.4 entails that
hφ(ξ) ≤ 1

µ(1) for all ξ ∈ R>0. In particular, hφ is bounded. This proves (i).
(ii) Suppose that φ is parabolic. Since φ is not hyperbolic, hφ is bounded by (i).

Consider the function

f : R>0 −→ R>0, ξ 7−→ ξhφ(ξ).

We prove that, for all ξ, ζ ∈ R>0,

f(ξ + ζ) ≥ f(ξ) + f(ζ)− f(ξ) · f(ζ) . (9)

For this purpose, fix ξ, ζ, ε ∈ R>0. Due to Lemma 3.5, there exist kξ, kζ ,mξ,mζ ∈ N≥1,
some uniform kξ-cover Cξ = (Cξ,i)i<mξ ∈ (Aφ,ξ)mξ in A, as well as some uniform
kζ-cover Cζ = (Cζ,j)j<mζ ∈ (Aφ,ζ)mζ in A such that

(1− ε)f(ξ) ≤ kξ
mξ
≤ f(ξ), (1− ε)f(ζ) ≤ kζ

mζ
≤ f(ζ). (10)

Put m := mξ ·mζ and consider

S := 〈{Cξ,i | i < mξ} ∪ {Cζ,j | j < mζ}〉A ∈ Π(A) .

Furthermore, let us define a sequence B := (B`)`<m ∈ Am by setting, for each pair
(i, j) ∈ {0, . . . ,mξ − 1} × {0, . . . ,mζ − 1},

Bi·mζ+j := Cξ,i ∨ Cζ,j .
As φ is a submeasure, B belongs to (Aφ,ξ+ζ)m. Since Cξ is a uniform kξ-cover in A
and Cζ is a uniform kζ-cover in A, it follows that, for each S ∈ S,
|{` < m | S ≤ B`}| = |{(i, j) | i < mξ, j < mζ , S ≤ Cξ,i ∨ Cζ,j}|

= |{i < mξ | S ≤ Cξ,i}| ·mζ +mξ · |{j < mζ | S ≤ Cζ,j}|
− |{i < mξ | S ≤ Cξ,i}| · |{j < mζ | S ≤ Cζ,j}|

= kξ ·mζ +mξ · kζ − kξ · kζ .
By Remark 3.4, as 〈B〉A � S, this shows that tA(B) = kξ ·mζ + mξ · kζ − kξ · kζ .
Thus, appealing to (10), we conclude that

f(ξ+ζ) ≥ kξ·mζ+mξ·kζ−kξ·kζ
mξ·mζ =

kξ
mξ

+
kζ
mζ
− kξ
mξ
· kζmζ ≥ (1−ε)(f(ξ)+f(ζ))−f(ξ)·f(ζ).

This proves (9). Since the function hφ is bounded, assertion (9) and Lemma 4.10
together imply the desired conclusion.

(iii) is obvious.
(iv) Of course, if φ = 0, then φ is pathological, thus hyperbolic by (i), and therefore

limξ→0 hφ(ξ) = limξ→0
1
ξ = ∞.

Suppose now that φ is a non-zero measure. In particular, φ is non-pathological. This
implies, by (ii) and (iii), the existence of the limit a := limξ→0 hφ(ξ) ∈ R. We will
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prove that a = 1
φ(1) . By Proposition 4.4, we have hφ(ξ) ≤ 1

φ(1) for every ξ ∈ R>0.
Hence, a ≤ 1

φ(1) . To prove the reverse inequality, we will show that

∀θ ∈ R>1 ∀n ∈ N≥1 : hφ

(
θφ(1)
n

)
≥ 1

θφ(1) . (11)

To this end, let θ ∈ R>1 and n ∈ N≥1. Since φ is diffuse, A admits a finite partition
of the unity, B, such that φ(B) ≤ (θ − 1)φ(1)

n for every B ∈ B. Note that, if B′ ⊆ B
and φ(

∨
B′) < φ(1)

n , then

φ
(
B ∨

∨
B′
)
≤ φ(B) + φ

(∨
B′
)
< (θ − 1)φ(1)

n + φ(1)
n = θφ(1)

n

for any B ∈ B \ B′. Using this observation, one can select a sequence of pairwise
disjoint subsets B0, . . . ,Bn−1 ⊆ B such that B =

⋃
i<n Bi and φ(

∨
Bi) < θφ(1)

n for
each i < n. Consider the sequence C := (Ci)i<n ∈ An given by Ci :=

∨
Bi for each

i < n. As φ(Ci) < θφ(1)
n for all i < n,

hφ

(
θφ(1)
n

)
≥ tA(C)

n(θφ(1)/n) = 1
θφ(1) .

This proves (11). From (11), we now infer that

a = limn→∞ hφ

(
θφ(1)
n

)
≥ 1

θφ(1)

for every θ ∈ R>1. Thus, a ≥ 1
φ(1) as desired. �

Below, we describe an example of a diffuse submeasure that shows that the converse
to the implication in (iii) of Theorem 4.7 fails to hold. It is a parabolic submeasure
that is far from being a measure.

Example 4.11. There exists a diffuse submeasure φ such that
(i) φ is parabolic, and
(ii) limξ→0 hφ(ξ) = 0.
The submeasure φ will be defined on the Boolean algebra A of all clopen subsets

of the topological product space X :=
∏∞
n=0Kn for an appropriate choice of positive

integers (Kn)n∈N. To guarantee that φ is not elliptic, as implied by point (i), we need
to make sure that

lim supξ→0
hφ(ξ)
ξ = ∞,

which will follow if we find a sequence (Bn)n∈N of partitions of X into clopen sets
and a sequence (ξn)n∈N of positive real numbers such that

φ(A) ≤ ξn for all n ∈ N and A ∈ Bn, and
limn→∞ |Bn| ξ2

n = 0.
(12)

Note that the above condition implies that limn→∞ ξn = 0 and, in turn, that φ will
be diffuse. To furthermore guarantee point (ii) and, in turn, prove the remaining part
of point (i), by Proposition 4.4 and the convergence established in Theorem 4.7, it
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will suffice to find a sequence (µn)n≥1 of measures on A such that, for the sequence
(ξn)n∈N as above,

for all A ∈ A and n ≥ 1, if φ(A) ≤ ξn, then µn(A) ≤ ξn, and
limn→∞ µn(X) = ∞.

(13)

We take a sequence (Mn)n≥1 of natural numbers such that, for each n ≥ 1,

n|Mn, 1 ≤
√
Mn

n ≤
√
Mn+1

n+1 , and limn→∞
√
Mn

n = ∞. (14)

So, for example, letting Mn := n3 for each n ≥ 1 will work. We set

K0 := 1 and Kn := Mn
n for each n ≥ 1

in the above definition of X. We also set

ξ0 := 1 and ξn := 1√
Mn

for each n ≥ 1.

For n ∈ N and i < Kn, let

[i, n] := {x ∈ X | xn = i}.
Furthermore, consider the set of finite sequences

S :=
{

(ik, nk)
p
k=1

∣∣ p ∈ N, n1, . . . , np ∈ N, i1 < Kn1 , . . . , ip < Knp

}
.

We define φ : A → R by setting

φ(A) := inf
{∑p

k=1
ξnk

∣∣∣ (ik, nk)pk=1 ∈ S, A ⊆
⋃p

k=1
[ik, nk]

}
(15)

for every A ∈ A. Clearly, φ : A → R is a submeasure and φ(X) = 1. We have the
following claim that asserts that the infimum in (15) is attained.

Claim. Let A ∈ A. There exists (ik, nk)
p
k=1 ∈ S such that

A ⊆
⋃p

k=1
[ik, nk] and φ(A) =

∑p

k=1
ξnk .

Proof of Claim. Since A is clopen, there exists a natural number N such that, for
x, y ∈ X, if xn = yn for all n ≤ N , then x ∈ A if and only if y ∈ A. Fix such an N
for the remainder of the proof of the claim.

If φ(A) ≥ 1, it suffices to take p = 1 and n1 = i1 = 0. So, let us assume φ(A) < 1.
It will suffice to show that, for every sequence (ik, nk)

p
k=1 ∈ S, if

A ⊆
⋃p

k=1
[ik, nk] and

∑p

k=1
ξnk < 1, (16)

then
A ⊆

⋃
{[ik, nk] | k ∈ {1, . . . , p}, nk ≤ N}.

Assume, towards a contradiction, that there is a sequence (ik, nk)pk=1 ∈ S for which
the above implication fails. By the choice of N , we can find s ∈

∏N
n=0Kn such that

B ⊆ A and B ∩
⋃
{[ik, nk] | k ∈ {1, . . . , p}, nk ≤ N} = ∅, (17)

where B :={x ∈
∏∞
n=0Kn |x�N = s}. Note that there is n > N such that

∀i < Kn ∃k ∈ {1, . . . , p} : i = ik and n = nk. (18)
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Otherwise, we can produce y ∈
∏∞
n=0Kn such that

y�N = s and y 6∈
⋃
{[ik, nk] | k ∈ {1, . . . , p}, nk > N},

which, by (17), implies that y ∈ A and y 6∈
⋃p
k=1[ik, nk], leading to a contradiction

with (16). So, fix n > N such that (18) holds. Then, by (14), we have∑p

k=1
ξnk ≥ Knξn = Mn

n
1√
Mn

=
√
Mn

n ≥ 1,

contradicting (16). The claim follows. �Claim

We claim that φ satisfies conditions (12) and (13), and therefore (i) and (ii). To
see (12), for each n ∈ N, note that

Bn := {[i, n] | i < Kn}

is a finite partition of X into elements of A and that φ([i, n]) ≤ ξn for all i ∈ Kn,
and moreover

limn→∞ |Bn| ξ2
n = limn→∞

Mn
n

(
1√
Mn

)2
= limn→∞

1
n = 0.

To see (13), for each n ≥ 1, we consider the product measure

µn :=
⊗∞

j=1
νn,j ,

where for j 6= n, νn,j is the measure on Kj assigning weight 1
Kj

= j
Mj

to each
singleton {i} for i < Kj , while νn,n is the measure on Kn assigning weight 1√

Mn
to

each singleton {i} for i < Kn. So, for j 6= n, νn,j is a probability measure, while the
total mass of νn,n is equal to

Kn
1√
Mn

= Mn
n

1√
Mn

=
√
Mn

n .

It follows that
µn(X) =

√
Mn

n , (19)

so limn→∞ µn(X) =∞.
It only remains to see that, for each n ≥ 1 and each A ∈ A, if φ(A) ≤ ξn, then

µn(A) ≤ ξn; we will actually show that

φ(A) ≤ ξn =⇒ µn(A) ≤ φ(A). (20)

To this end, fix n ≥ 1, which will remain fixed for the remainder of the example.
First, we point out that since µn is a measure, it follows from (19) that, for all j ≥ 1
and i < Kj ,

µn([i, j]) =

√
Mn

n
Kj

=
√
Mn

Mj

j
n . (21)

Now, let us call a sequence (ik, nk)
p
k=1 ∈ S tight if

φ
(⋃p

k=1
[ik, nk]

)
=
∑p

k=1
ξnk .
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We claim that, for every tight sequence (ik, nk)
p
k=1 ∈ S,

φ
(⋃p

k=1
[ik, nk]

)
≤ ξn =⇒ µn

(⋃p

k=1
[ik, nk]

)
≤ φ

(⋃p

k=1
[ik, nk]

)
. (22)

We prove (22) by induction on p, with the usual convention for p = 0: the sequence
is empty, it is tight, and the implication (22) holds since

⋃p
k=1[ik, nk] = ∅. So, fix

p ≥ 0 and assume that (22) holds for p; we prove it for p+ 1. Let (ik, nk)p+1
k=1 ∈ S be

a tight sequence. Set

C :=
⋃p+1

k=1
[ik, nk] and B :=

⋃p

k=1
[ik, nk].

Suppose that φ(C) ≤ ξn. We observe that (ik, nk)
p
k=1 is tight since otherwise, p > 0

and φ(B) <
∑p

k=1 ξnk , so

φ(C) ≤ φ(B) + φ([ip+1, np+1]) ≤ φ(B) + ξnp+1 <
∑p+1

k=1
ξnk ,

a contradiction. Thus, by inductive assumption, it follows that

φ(C) =
∑p

k=1
ξnk + ξnp+1 = φ(B) + ξnp+1

≥ µn(B) + ξnp+1 = µn(B) + 1√
Mnp+1

.
(23)

Note that since
ξn ≥ φ(C) =

∑p+1

k=1
ξnk ,

we have np+1 ≥ n. Using np+1 ≥ n and (14), we see that

1√
Mnp+1

≥
√
Mn

Mnp+1

np+1

n .

Thus, continuing with (23) and using (21), we get

φ(C) ≥ µn(B) +
√
Mn

Mnp+1

np+1

n = µn(B) + µn([ip+1, np+1]) ≥ µn(C).

The inductive argument for (22) is completed.
Now, we prove (20). Fix any A ∈ A with φ(A) ≤ ξn. By our Claim above, there

exists a sequence (ik, nk)
p
k=1 ∈ S such that A ⊆

⋃p
k=1[ik, nk] and φ(A) =

∑p
k=1 ξnk .

It is clear that this sequence is tight. Therefore, by (22), we have

φ(A) = φ
(⋃p

k=1
[ik, nk]

)
≥ µn

(⋃p

k=1
[ik, nk]

)
≥ µn(A),

as required.

5. Lévy nets from submeasures

In this section, we combine the quantitative classification from Section 4 with
the results of Section 3 to exhibit new examples of Lévy nets: we prove that any
non-elliptic submeasure gives rise to a Lévy net (Theorem 5.6). For this purpose, let
us introduce the following family of pseudo-metrics, the definition of which may be
compared with Definition 3.10
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Definition 5.1. Let A be a Boolean algebra and let φ : A → R be a submeasure.
For B ∈ Π(A) and a set Ω, we define a pseudo-metric

δφ,B : ΩB × ΩB −→ R≥0

by setting
δφ,B(x, y) := φ

(∨
{B ∈ B | x(B) 6= y(B)}

)
.

Given a standard Borel probability space (Ω, µ), we let

X (Ω, µ,B, φ) :=
(
ΩB, δφ,B, µ

⊗B) .
Let λ denote the Lebesgue measure on the standard Borel space I := [0, 1] ⊆ R.

Remark 5.2. Let A be a Boolean algebra. Consider a submeasure φ : A → R and
let B ∈ Π(A). If (Ω0, µ0) and (Ω1, µ1) are two standard Borel probability spaces and
π : Ω0 → Ω1 is a measurable map with π∗(µ0) = µ1, then

π̂ :
(
ΩB0 , δφ,B

)
−→

(
ΩB1 , δφ,B

)
, x 7−→ π ◦ x

is a 1-Lipschitz map and π̂∗
(
µ⊗B0

)
= µ⊗B1 , thus Remark 2.2(2) asserts that

αX (Ω1,µ1,B,φ) ≤ αX (Ω0,µ0,B,φ).

In particular, since for every standard Borel probability space (Ω, µ) there exists a
measurable map ψ : I → Ω with ψ∗(λ) = µ (for instance, see [Shi16, Lemma 4.2]),
this entails that

αX (Ω,µ,B,φ) ≤ αX (I,λ,B,φ).

Definition 5.3. Let A be a Boolean algebra. We say that a submeasure φ : A → R
has covering concentration if, for every ε ∈ R>0, there exists C ∈ Π(A) such that

sup{αX (I,λ,B,φ)(ε) | B ∈ Π(A), C � B} ≤ ε.

Remark 5.4. Let A be a Boolean algebra. It follows from Remark 2.2(1) that a
submeasure φ : A → R has covering concentration if and only if there exists a sequence
(C`)`∈N ∈ Π(A)N such that, for every ε ∈ R>0,

sup{αX (I,λ,B,φ)(ε) | B ∈ Π(A), C` � B} −→ 0 as `→∞.

For clarification, let us point out the following.

Lemma 5.5. Every submeasure having covering concentration is diffuse.

Proof. Let A be a Boolean algebra. Suppose that φ : A → R is a submeasure with
covering concentration. Let ε ∈ R>0. By assumption, there exists B ∈ Π(A) with
αX (I,λ,B,φ)(ε) <

1
2 . We claim that φ(B) < ε for each B ∈ B. To see this, let B ∈ B.

Note that λ⊗B(T ) = 1
2 for the measurable subset

T :=
{
x ∈ IB

∣∣x(B) ≤ 1
2

}
⊆ IB.

Now, if φ(B) ≥ ε, then Bδφ,B(T, ε) = T , which implies that λ⊗B(Bδφ,B(T, ε)) = 1
2 , so

αX (I,λ,B,φ)(ε) ≥ 1
2 , contradicting our choice of B. Hence, φ(B) < ε as desired. �

By force of Corollary 3.12, we arrive at our third main result.
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Theorem 5.6. Every hyperbolic or parabolic submeasure has covering concentration.

Proof. Let A be a Boolean algebra and consider any non-elliptic diffuse submeasure
φ : A → R. Let ε ∈ R>0. Fix any r ∈ R≥0 with exp

(
− rε2

16

)
≤ ε. By our assumption,

there exists some ξ ∈ R>0 such that

hφ(ξ)
ξ ≥ r . (24)

Now, we find m ∈ N>0 and a sequence C = (Ci)i<m ∈ (Aφ,ξ)m such that

tA(C)
mξ2

≥ hφ(ξ)
2ξ . (25)

Let B ∈ Π(A) with 〈C〉A � B. By Remark 3.7(2), the sequence CB := (CB,i)i<m,
defined by

CB,i := {B ∈ B | B ≤ Ci}

for all i < m, constitutes a tA(C)-cover of the set B. Furthermore, note that, by
subadditivity of the submeasure φ, we have δφ,B ≤ dCB,(φ(Ci))i<m on IB. (For the
definition of the latter pseudo-metric, see Definition 3.10, page 14.) Consequently,
combined with (25) and (24), Corollary 3.12 asserts that

sup{αX (I,λ,B,φ)(ε) | B ∈ Π(A), 〈C〉A � B} ≤ exp
(
− tA(C)ε2

8
∑
i<m φ(Ci)2

)
≤ exp

(
− tA(C)ε2

8mξ2

)
≤ exp

(
−hφ(ξ)ε2

16ξ

)
≤ exp

(
− rε2

16

)
≤ ε. �

We conclude this section by exhibiting a family of elliptic submeasures without
covering concentration: in fact, we construct a diffuse submeasure φ that does not
have concentration and is such that hφ(ξ)/ξ does not converge to 0 fast, as ξ → 0.
The example involves an application of the Berry–Esseen theorem [Ber41, Ess42] (see
also [Fel71, Chapter XVI.5]). A precise statement is given below.

Example 5.7. Fix any function θ : R>0 → R>0 such that limξ→0 θ(ξ) = 0. There
exists a diffuse submeasure φ such that

(i) φ does not have covering concentration, and
(ii) lim supξ→0

hφ(ξ)/ξ
θ(ξ) =∞.

We split our description of the example and the arguments associated with them
into several parts.

A general claim. Assume we are given positive integers M1, . . . ,Mk. Define

T := M1 × · · · ×Mk and T≤ :=
⋃k

i=0
M1 × · · · ×Mi. (26)

For each y ∈ 2T , we define an extension ȳ ∈ 2T≤ recursively as follows: let

ȳ(t) := y(t), for t ∈ T ; (27)



CONCENTRATION, CLASSIFICATION, AND DYNAMICS 27

and if i ∈ {0, . . . , k − 1} and ȳ(s) is defined for all s ∈ T≤ with |s| ≥ i+ 1, then, for
t ∈ T≤ with |t| = i, put

ȳ(t) :=

{
0 if |{j < Mi+1 | ȳ(tj) = 1}| ≤ Mi+1

2 ,

1 otherwise.
(28)

Let
A :=

{
y ∈ 2T

∣∣ ȳ(∅) = 0
}
. (29)

Assume, additionally, we are given positive real numbers d1, . . . , dk. For each
y ∈ 2T , define another extension ŷ ∈ 2T≤ recursively as follows: we let

ŷ(t) := y(t), for t ∈ T ; (30)

and if i ∈ {0, . . . , k − 1} and ŷ(s) is defined for all s ∈ T≤ with |s| ≥ i+ 1, then, for
t ∈ T≤ with |t| = i, put

ŷ(t) :=

{
0 if |{j < Mi+1 | ŷ(tj) = 1}| < Mi+1

2 + di+1,

1 otherwise.
(31)

Let
B :=

{
y ∈ 2T

∣∣ ŷ(∅) = 0
}
. (32)

Finally, define a binary relation ∼ ⊆ 2T × 2T as follows. For x, y ∈ 2T , we write
x ∼ y precisely if there exists a subset S ⊆ T≤ \ {∅} such that

∀i < k ∀s ∈ T :
(
|s| = i =⇒ |S ∩ {sj | j < Mi+1}| < di+1

)
and

∀t ∈ T :
(
x(t) 6= y(t) =⇒

(
∃i ∈ {0, . . . , k} : t�{1,...,i} ∈ S

))
.

(33)

The relation ∼ is symmetric and reflexive.
We point out that the two operations 2T 3 y 7→ ȳ ∈ 2T≤ and 2T 3 y 7→ ŷ ∈ 2T≤ ,

the sets A, B, and the relation ∼ defined above depend on the sequences M1, . . . ,Mk

and d1, . . . , dk. We do not reflect this dependence in our notation as we do not
want to burden the symbols with subscripts. However, the reader should keep this
dependence in mind.

Claim 5.8. (i) |A| ≥ 2|T |−1.
(ii)

{
y ∈ 2T

∣∣ ∃x ∈ A : x ∼ y
}
⊆ B.

Proof of Claim 5.8. To see (i), consider the bijection

2T −→ 2T , y 7−→ 1− y

where, for each s ∈ T , (1− y)(s) := 1− y(s). Now (i) is an immediate consequence
(with t = ∅) of the implication

ȳ(t) = 1 =⇒ 1− y(t) = 0,

which holds for all t ∈ T≤ and is proved by induction on k − |t|.
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The inclusion in point (ii) is proved by induction on k, that is, on the length of
the sequence (Mi)

k
i=1.

Assume first that k = 1. In this case, we can identify T with M1. We have

A =
{
x ∈ 2M1

∣∣ |{j < M1 |x(j) = 1}| ≤ M1
2

}
and

B =
{
y ∈ 2M1

∣∣ |{j < M1 | y(j) = 1}| < M1
2 + d1

}
.

On the other hand, if x ∼ y, then there is S ⊆M1 such that

{j < M1 |x(j) 6= y(j)} ⊆ S and |S| < d1,

and (ii) for k = 1 follows immediately.
We show now the inductive step: given sequence (Mi)

k
i=1 and (di)

k
i=1 with k > 1,

we consider the sequences (Mi)
k
i=2 and (di)

k
i=2 and, assuming the inclusion in point

(ii) holds for them, we prove the inclusion for (Mi)
k
i=1 and (di)

k
i=1. Define

T 0 := M2 × · · · ×Mk, T 0
≤ :=

⋃k

i=1
M2 × · · · ×Mi.

Let the operations x 7→ x0, x 7→ x̂0, the sets A0, B0, and the relation ∼0 be defined in
the manner analogous to x 7→ x, x 7→ x̂, A, B, and ∼, but for the sequences (Mi)

k
i=2

and (di)
k
i=2 instead of (Mi)

k
i=1 and (di)

k
i=1. By induction, we assume that{

y ∈ 2T0
∣∣∃x ∈ A0 : x ∼0 y

}
⊆ B0. (34)

For x ∈ 2T and j < M1, let xj ∈ 2T
0 be defined by

xj(s) := x(js).

We note two essentially tautologous equations, justification of which we leave to the
reader:

x(j) = xj
0(∅) and x̂(j) = x̂j

0(∅). (35)

The following three implications hold for all x, y ∈ 2T :

x ∈ A =⇒
(∣∣{j < M1

∣∣xj ∈ A0
}∣∣ ≥ M1

2

)
, (36)(∣∣{j < M1

∣∣ yj ∈ B0
}∣∣ > M1

2 − d1

)
=⇒ y ∈ B, (37)

x ∼ y =⇒
(
|{j < M1 |xj ∼0 yj}| > M1 − d1

)
. (38)

Implication (36) follows from the definitions of A and A0 and from the first equation
of (35). Similarly, implication (37) follows from the definitions of B and B0 and from
the second equation of (35). To get (38), observe that if S ⊆ T≤ \ {∅} witnesses that
x ∼ y, then, for j < M1, if the one-element sequence whose only entry is j is not in
S, then the set {

s ∈ T 0
≤
∣∣ js ∈ S}

witnesses that xj ∼0 yj ; therefore, (38) follows since the set S satisfies the first clause
of (33) (for i = 0).
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Now we aim to prove y ∈ B assuming that x ∈ A and x ∼ y. By (36) and (38),∣∣{j < M1

∣∣xj ∈ A0 and xj ∼0 yj
}∣∣ > M1

2 − d1.

Applying our inductive assumption (34) to this inequality, we get∣∣{j < M1

∣∣ yj ∈ B0
}∣∣ > M1

2 − d1,

which yields y ∈ B by (37), as required. Therefore, the claim is proved. �Claim 5.8

A consequence of the Berry–Esseen theorem. As a result of the Berry–Esseen
theorem, there exists an increasing function C : [1/2, 1) → R>0 with the following
property: for all a, b ∈ R>0 with b ≤ a and a + b = 1, for every d ∈ R≥0, and for
every finite sequence X1, . . . , Xn of independent random variables such that

∀i ∈ {1, . . . , n} : P[Xi = 0] = a, P[Xi = 1] = b,

we have
P
[

1√
n

∑n

i=1
(Xi − b) < d

]
< 1

2 + C(a)
(
d+ 1√

n

)
. (39)

It follows from (39) that, if a ∈
[

1
2 ,

3
4

]
and δ ∈ R≥0, then

P
[
|{i ∈ {1, . . . , n} | Xi = 1}| < n

2 + δ
√
n
]
− 1

2 < K
(
δ +

(
a− 1

2

)√
n+ 1√

n

)
, (40)

where K := max
{
C
(

3
4

)
, 1
}
. Indeed, assuming that a ≤ 3

4 and substituting

d := δ +
(
a− 1

2

)√
n

in (39), we obtain

P
[

1√
n

∑n

i=1
(Xi − b) < δ +

(
a− 1

2

)√
n
]
< 1

2 +K
(
δ +

(
a− 1

2

)√
n+ 1√

n

)
. (41)

A quick calculation shows that the condition
1√
n

∑n

i=1
(Xi − b) < δ +

(
a− 1

2

)√
n

is equivalent to ∑n

i=1
Xi <

n
2 + δ

√
n,

which, in turn, is equivalent to the condition

|{i ∈ {1, . . . , n} | Xi = 1}| < n
2 + δ

√
n.

Putting the above equivalences together with (41), we arrive at (40).
Defining a submeasure. For any sequence of positive integers M = (Mi)i∈N≥1

and
any sequence of positive reals w = (wi)i∈N, we define the submeasure

φM,w : P
(∏

i∈N≥1

Mi

)
−→ R

by setting

φM,w(A) := inf

{∑
s∈S

w|s|

∣∣∣∣S ⊆⋃i∈N≥1

∏i−1

j=1
Mj , A ⊆

⋃
s∈S

[s]M

}
,

where [s]M :=
{
x ∈

∏
i∈N≥1

Mi

∣∣∣x�{1,...,i−1} = s
}

for any s ∈
∏i−1
j=1Mj with i ∈ N≥1.
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Choosing the parameters. To determine the submeasure φM,w we only need to
specify the two sequences M and w. We pick M and w in agreement with the
following four conditions:

limi→∞wi = 0; (42)

limi→∞w
2
i M1 · · ·Mi θ(wi) = 0; (43)

1 ≤ w0 and
1

Mi
≤ wi for all i ∈ N≥1; (44)

and there exists a sequence (εk)k∈N of positive reals such that

ε0 < 1
4 and εk−1 = K

(
1

wk
√
Mk

+
√
Mk εk + 1√

Mk

)
for all k ∈ N≥1. (45)

Note that the equation in (45) determines (εk)k∈N from ε0. So, given ε0, we can
define the whole sequence (εk)k∈N; the only issue in question is whether εk > 0 for
all k ∈ N≥1.

The sequences M and w are constructed as follows. The constant K ≥ 1 was
defined above. Let w0 := 1. Since limξ→0 θ(ξ) = 0, for each i ∈ N≥1, we find a
positive real wi so that

wi ≤ 2−i and 22i+5M1 · · ·Mi−1K
i
√
θ(wi) < 1, (46)

with the usual convention that the product M1 · · ·Mi−1 equals 1 if i = 1. Then, using
(46) and the fact that 1 ≤

√
m+1√
m
≤ 2 for all m ∈ N≥1, we find a positive integer Mi

so that

2iwi
√
M1 · · ·Mi−1

√
θ(wi) ≤ 1√

Mi
≤ 2i+1wi

√
M1 · · ·Mi−1

√
θ(wi). (47)

Let us check that the chosen sequences w and M meet the four conditions stated
above. Evidently, (42) is satisfied due to the first assertion of (46). Also, the first
inequality in (47) gives (43). To get (44), note that the first inequality in (44) is
obvious since w0 = 1. To see the second inequality of (44), observe that, since K ≥ 1,
(46) implies

2i+1√wi
√
M1 · · ·Mi−1

√
θ(wi) < 1 for all i ∈ N≥1.

This inequality, when applied to the second inequality in (47), gives
1√
Mi
≤
√
wi for all i ∈ N≥1,

which immediately yields the remainder of (44). The second inequality in (47),
together with (46), guarantees that, for each k ∈ N, the series

εk :=
∑∞

i=k+1

((
1
wi

+ 1
) √

Mk+1···Mi−1√
Mi

Ki−k
)

converges, and that ε0 < 1
4 , again with the usual convention that the product

Mk+1 · · ·Mi−1 is equal to 1 if i = k + 1. It is clear that εk > 0 for each k ∈ N. It is
also easy to check that the sequence (εk)k∈N satisfies the equation in (45).
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Let M and w be sequences as above. Consider the Boolean algebra A of all clopen
subsets of topological product space Z :=

∏
k∈N≥1

Mk, and note that the submeasure

φ := φM,w�A : A −→ R

is diffuse due to (42). Additionally, for each k ∈ N≥1, let

δk := 1
wk
√
Mk

(48)

and consider the partition

Bk := {[s]M | s ∈M1 × · · · ×Mk} ∈ Π(A).

Checking (i), that is, lack of covering concentration. Denote by µ the normalized
counting measure on 2 = {0, 1}. We will prove that, for each k ∈ N≥1,

αX (2,µ,Bk,φ)(1) ≥ 1
4 . (49)

By Remark 5.2 and {Bk | k ∈ N≥1} being cofinal in (Π(A),�), this will imply that
φ : A → R does not have covering concentration. Inequality (49) will be witnessed by
the sets A′ and B′ defined below. The idea for the definitions of these two sets comes
from [FS08, Theorem 4.2].

To prove (49), let k ∈ N≥1. Let T and T≤ be as in (26) for M1, . . . ,Mk chosen as
above. For δ1, . . . , δk chosen as in (48), set

di = δi
√
Mi, for i ∈ {1, . . . , k},

and define the operations

2T 3 y 7−→ ȳ ∈ 2T≤ and 2T 3 y 7−→ ŷ ∈ 2T≤

as in (27), (28), (30), and (31) for the sequences (Mi)
k
i=1 and (di)

k
i=1 described

above. Furthermore, let A, B, and ∼ be as in (29), (32), and (33). Recall that, by
Claim 5.8(i),

|A| ≥ 2|T |−1. (50)
Let B := Bk and consider the bijection f : T → B, s 7→ [s]M . We will prove that{

y ∈ 2B
∣∣∃x ∈ A′ : δφ,B(x, y) < 1

}
⊆ B′, (51)

where
A′ :=

{
x ∈ 2B

∣∣x ◦ f ∈ A} and B′ :=
{
x ∈ 2B

∣∣x ◦ f ∈ B} .
We will also prove that

|B| ≤ 3
4 2|T |. (52)

Formula (51) together with (52) and (50) will show (49).
We start with showing (51). Recall first that, by Claim 5.8(ii),{

y ∈ 2T
∣∣∃x ∈ A : x ∼ y

}
⊆ B. (53)

We claim that

∀x, y ∈ 2B : dB,φ(x, y) < 1 =⇒ (x ◦ f) ∼ (y ◦ f). (54)
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To see this, let x, y ∈ 2B be such that

dB,φ(x, y) < 1. (55)

Set
T ′ := {t ∈ T | x([t]M ) 6= y([t]M )},

and note that (55) implies that there exists S ⊆
⋃∞
k=0M1 × · · · ×Mk such that⋃

t∈T ′
[t]M ⊆

⋃
s∈S

[s]M (56)

and ∑
s∈S

w|s| < 1. (57)

Now, (56) implies that

∀t ∈ T ′ ∃i ∈ {0, . . . , k} : t�{1,...,i} ∈ S or
∃k ∈ N ∃s ∈M1 × · · · ×Mk : (sj ∈ S for all j ∈Mk+1) .

(58)

The second clause of (58) gives k ∈ N such that

Mk+1wk+1 ≤
∑

s∈S
w|s|.

Since, by (44), 1 ≤Mk+1wk+1, the above inequality contradicts (57). Thus, the first
clause of (58) holds. In particular, we have that S ⊆ T≤ since T ′ ⊆ T . Furthermore,
∅ ∈ S together with w0 ≥ 1 from (44) would also contradict (57). Thus, ∅ 6∈ S.

To sum up, we have S ⊆ T≤ \ {∅} such that

∀t ∈ T :
(
x([t]M ) 6= y([t]M ) =⇒

(
∃i ∈ {0, . . . , k} : t�{1,...,i} ∈ S

))
and for which (57) holds. Now note that if i ∈ {0, . . . , k − 1}, then, by (57), for each
s ∈ T≤ with |s| = i, we have

wi+1 |S ∩ {sj | j < Mi+1}| =
∑

sj∈S
w|sj| < 1 = δi+1wi+1

√
Mi+1,

which implies that
|S ∩ {sj | j < Mi+1}| < δi+1

√
Mi+1.

Thus, S witnesses that (x◦f) ∼ (y ◦f). This proves (54). Clearly, from (54) together
with (53), the inclusion (51) follows immediately.

Now we prove (52). To this end, choose any family of independent random variables
(Xt)t∈T defined on a common domain Ω such that, for each t ∈ T , we have

P[Xt = 0] = 1
2 = P[Xt = 1].

We define a family of random variables (Ys)s∈T≤ on the same domain Ω recursively
as follows. For each t ∈ T , let Yt := Xt. Furthermore, if i ∈ {0, . . . , k − 1} and Ys is
defined for all s ∈ T≤ with |s| ≥ i+ 1, then, for each t ∈ T≤ with |t| = i, we define

Yt(ω) :=

{
0 if |{j ∈Mi+1 | Ytj(ω) = 1}| < Mi+1

2 + δi+1
√
Mi+1,

1 otherwise.
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for all ω ∈ Ω. Define also, for t ∈ T≤, the set

Bt :=
{
y ∈ 2T

∣∣ ŷ(t) = 0
}
.

We leave it to the reader to verify by induction on k − |t| that, for each t ∈ T≤,

|Bt|
2|T |

= P[Yt = 0].

Since B∅ = B, the equation above gives

|B|
2|T |

= P[Y∅ = 0].

Therefore, to prove (52), it remains to show that P[Y∅ = 0] ≤ 3
4 . In fact, we will

prove that

P[Y∅ = 0]− 1
2 ≤ ε0, (59)

which will suffice by (45). To this end, let us note that, for every i ∈ {0, . . . , k}, there
are real numbers 0 < bi ≤ ai with ai + bi = 1 and such that, for all t ∈ T≤,

|t| = i =⇒
(
P[Yt = 0] = ai and P[Yt = 1] = bi

)
.

Evidently, ak = bk = 1/2. Furthermore, for each i ∈ {0, . . . , k}, (Yt | t ∈ T≤, |t| = i)
is a family of independent random variables. Observe now that, by (45), the sequence
(εi)i∈N is decreasing from ε0 <

1
4 , so that in particular

∀i ∈ {0, . . . , k} : εi <
1
4 . (60)

Using (40), (45), (48) and (60), we see by induction on k − i that

∀i ∈ {0, . . . , k} : ai − 1
2 < εi. (61)

Now, (61) and (60) together imply that

∀i ∈ {0, . . . , k} : ai <
3
4 ,

which gives (59) for i = 0, as required.

Checking (ii), that is, the submeasure is elliptic (by (i)), but barely. For every
i ∈ N≥1, considering the partition of Z into the sets [s]M ∈ A with s ∈M1×· · ·×Mi,
we conclude that

hφ(wi)
wi

≥ 1
w2
iM1···Mi

.

From (43) and (42), it follows that

lim supξ→0
hφ(ξ)/ξ
θ(ξ) ≥ lim supi→∞

1
w2
iM1···Mi θ(wi)

= ∞,

as required.
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6. Dynamical background

The purpose of this section is to provide some background material necessary
for the topological applications of our concentration results, which are given in the
subsequent Section 7. These applications will concern topological dynamics, that
is, the structure of topological groups reflected by their flows. To be more precise,
if G is a topological group, then a G-flow is any non-empty compact Hausdorff
space X together with a continuous action of G on X. The study of such objects
is intimately linked with properties of certain function spaces naturally associated
with the acting group. Some aspects of this correspondence, in particular concerning
amenability, extreme amenability, and the connection with measure concentration,
will be summarized below. For more details, we refer to [Pes06, Pac13].

Now let G be a topological group. Denote by U(G) the neighborhood filter of the
neutral element in G and endow G with its right uniformity defined by the basic
entourages {

(x, y) ∈ G×G
∣∣ yx−1 ∈ U

}
,

where U ∈ U(G). In particular, a function f : G → R is called right-uniformly
continuous if for every ε ∈ R>0 there exists U ∈ U(G) such that

∀x, y ∈ G : yx−1 ∈ U =⇒ |f(x)− f(y)| ≤ ε.

The set RUCB(G) of all right-uniformly continuous, bounded real-valued functions
on G, equipped with the pointwise operations and the supremum norm, constitutes
a commutative unital real Banach algebra. A subset H ⊆ RUCB(G) is called UEB
(short for uniformly equicontinuous, bounded) if H is ‖ · ‖∞-bounded and right-
uniformly equicontinuous, that is, for every ε ∈ R>0 there is U ∈ U(G) such that

∀f ∈ H ∀x, y ∈ G : yx−1 ∈ U =⇒ |f(x)− f(y)| ≤ ε.

The set RUEB(G) of all UEB subsets of RUCB(G) forms a convex vector bornology
on RUCB(G). The UEB topology on the dual Banach space RUCB(G)∗ is defined as
the topology of uniform convergence on the members of RUEB(G). This is a locally
convex linear topology on the vector space RUCB(G)∗ containing the weak-∗ topology,
that is, the initial topology generated by the maps RUCB(G)∗ → R, µ 7→ µ(f) where
f ∈ RUCB(G). More detailed information on the UEB topology is to be found
in [Pac13]. Furthermore, let us recall that the set

M(G) := {µ ∈ RUCB(G)∗ | µ positive, µ(1) = 1}
of all means on RUCB(G) constitutes a compact Hausdorff space with respect to
the weak-∗ topology. The set S(G) of all (necessarily positive, linear) unital ring
homomorphisms from RUCB(G) to R is a closed subspace of M(G), called the Samuel
compactification of G. For g ∈ G, let λg : G→ G, x 7→ gx and ρg : G→ G, x 7→ xg.
Note that G admits an affine continuous action on M(G) given by

(gµ)(f) := µ(f ◦ λg),
where g ∈ G, µ ∈ M(G), f ∈ RUCB(G), and that S(G) constitutes a G-invariant
subspace of M(G). Let us recall that G is amenable (resp., extremely amenable) if
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M(G) (resp., S(G)) admits a G-fixed point. It is well known that G is amenable
(resp., extremely amenable) if and only if every continuous action of G on a non-void
compact Hausdorff space admits a G-invariant regular Borel probability measure
(resp., a G-fixed point). For a comprehensive account on (extreme) amenability of
topological groups, the reader is referred to [Pes06]. Below we recollect two specific
results in that direction (Theorem 6.1 and Theorem 6.5), relevant for Section 7.

First, regarding amenability of topological groups, we recall the following result
from [ST18], which will be used in the proof of Theorem 7.5. Given a measurable
space Ω, let us denote by Prob(Ω) the set of all probability measures on Ω and by
Probfin(Ω) the convex envelope of the set of Dirac measures in Prob(Ω).

Theorem 6.1 ([ST18], Theorem 3.2). A topological group G is amenable if and only
if, for every ε ∈ R>0, every H ∈ RUEB(G) and every finite subset E ⊆ G, there
exists µ ∈ Probfin(G) such that, for g ∈ E and f ∈ H,∣∣∣∣∫ f dµ−

∫
f ◦ λg dµ

∣∣∣∣ ≤ ε.

The result above suggests the following definition.

Definition 6.2. Let G be a topological group. A net (µi)i∈I of Borel probability
measures on G is said to UEB-converge to invariance (over G) if, for all g ∈ G and
H ∈ RUEB(G),

supf∈H

∣∣∣∣∫ f dµi −
∫
f ◦ λg dµi

∣∣∣∣ −→ 0, as i −→ I.

For readers primarily interested in metrizable topological groups, we include the sub-
sequent clarifying remark. Let us recall that, by well-known work of Birkhoff [Bir36]
and Kakutani [Kak36], a topological group G is first-countable if and only if G is
metrizable, in which case G admits a metric d both generating the topology of G and
being right-invariant, in the sense that d(xg, yg) = d(x, y) for all g, x, y ∈ G.

Remark 6.3. Let G be a metrizable topological group and let d be a right-invariant
metric on G generating the topology of G. Consider the set

Lip1
1(G, d) :=

{
f ∈ [−1, 1]G

∣∣∀x, y ∈ G : |f(x)− f(y)| ≤ d(x, y)
}
.

Then a net (µi)i∈I of Borel probability measures on G UEB-converges to invariance
over G if and only if, for every g ∈ G,

supf∈Lip1
1(G,d)

∣∣∣∣∫ f dµi −
∫
f ◦ λg dµi

∣∣∣∣ −→ 0, as i −→ I.

A proof of this fact is to be found in [Sch19, Corollary 3.6].

Second, let us recall that concentration of measure (Section 2.1) provides a very
prominent method for proving extreme amenability of topological groups. This
approach goes back to the seminal work of Gromov and Milman [GM83] and has
since been used in establishing extreme amenability for many concrete examples of
Polish groups (see [Pes06, Chapter 4] for an overview). Below we mention a refined
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version of this method, as developed in [Pes10, PS17]. As usual, we define the support
of a Borel probability measure µ on a topological space X to be

suppµ := {x ∈ X | ∀U ⊆ X open: x ∈ U =⇒ µ(U) > 0},
which is easily seen to constitute a closed subset of X. The following notion first
appeared in [Pes10], but originates in [GTW05, GW05].

Definition 6.4. A topological group G is called whirly amenable if
— G is amenable, and
— any G-invariant regular Borel probability measure on a G-flow has support

contained in the set of G-fixed points.

Of course, whirly amenability implies extreme amenability. Note that the converse
does not hold: the Polish group Aut(Q, <), carrying the topology of pointwise conver-
gence, is extremely amenable [Pes98], but not whirly amenable [GTW05, Remark 1.3].

In order to establish whirly (hence extreme) amenability of topological groups
of measurable maps the next section, we will combine the results of Section 5 with
the strategy provided by the following theorem, which generalizes earlier results by
Pestov [Pes10, Theorem 5.7] and Glasner–Tsirelson–Weiss [GTW05, Theorem 1.1].

Theorem 6.5 ([PS17], Theorem 3.9). Let G be a topological group. If there exists a
net (µi)i∈I of Borel probability measures on G such that

— (µi)i∈I concentrates in G (with respect to the right uniformity),
— (µi)i∈I UEB-converges to invariance over G,

then G is whirly amenable.

For a quantitative generalization of Theorem 6.5 in the context of Gromov’s observ-
able diameters [Gro99, Chapter 31

2 ], the reader is referred to [Sch19, Theorem 1.2].

7. Topological groups of measurable maps

This final section is devoted to applications of our results in topological dynamics.
More precisely, we establish whirly amenability (thus, extreme amenability) of topolo-
gical groups of measurable maps over parabolic or hyperbolic submeasures, with coef-
ficients in any amenable topological group. Such groups, introduced for the Lebesgue
measure by Hartman–Mycielski [HM58] and later studied for pathological submeas-
ures by Herer–Christensen [HC75], have more recently attracted growing attention
in the context of extreme amenability [Gla98, Pes02, FS08, Pes10, Sab12, PS17],
representation theory [Sol14], and ample generics [KLM15, KM19].

We choose an abstract approach to topological groups of measurable maps, following
Fremlin [Fre06, 493A]. A more concrete description based on Stone’s representation
theorem for Boolean algebras [Sto36] will be given in Remark 7.1. Let φ : A → R be
a submeasure on a Boolean algebra A and let G be a topological group. By a finite
G-partition of unity in A we mean a family A = (Ag)g∈G ∈ AG such that

— {g ∈ G | Ag 6= 0} is finite,
—

∨
g∈GAg = 1, and
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— Ag ∧Ah = 0 for any two distinct g, h ∈ G.
Consider the topological group L0(φ,G) consisting of all finite G-partitions of unity
in A, equipped with the multiplication defined by

(A ·B)g :=
∨

h∈G
Ah ∧Bh−1g =

∨
h∈G

Agh−1 ∧Bh

for A,B ∈ L0(φ,G) and g ∈ G, and endowed with the topology of convergence in φ.
To be precise about the topology, let

Nφ(A,U, ε) :=
{
B ∈ L0(φ,G)

∣∣∣φ(∨{Ag ∧Bh | g, h ∈ G, h /∈ Ug})< ε
}

for any A ∈ L0(φ,G), U ∈ U(G) and ε ∈ R>0. Then a subset M ⊆ L0(φ,G) is open
if and only if

∀A ∈M ∃U ∈ U(G) ∃ε ∈ R>0 : Nφ(A,U, ε) ⊆ M.

In turn, a neighborhood basis at the neutral element eL0(φ,G) ∈ L0(φ,G), determined
by
(
eL0(φ,G)

)
eG = 1 and

(
eL0(φ,G)

)
g = 0 whenever g ∈ G\{eG}, is given by the family

of sets

Nφ(U, ε) := Nφ

(
eL0(φ,G), U, ε

)
=

{
A ∈ L0(φ,G)

∣∣∣∣φ(∨g∈G\U
Ag

)
< ε

}
,

where U ∈ U(G) and ε ∈ R>0. For every B ∈ Π(A), a straightforward computation
reveals that the map

γB : GB −→ L0(φ,G), f 7−→
(∨

f−1(g)
)
g∈G

is a continuous homomorphism.
Thanks to Stone’s representation theorem [Sto36], every Boolean algebra is iso-

morphic to a Boolean subalgebra of P(X) for some set X. In the subsequent remark,
we recast the abstract construction above for such concrete algebras of sets.

Remark 7.1. Let X be a set and let A be a Boolean subalgebra of P(X). Moreover,
let φ : A → R be a submeasure and let G be a topological group. Consider the
topological group

L̃0(φ,G) :=
{
f ∈ GX

∣∣ ∃B ∈ Π(A) ∀B ∈ B : f is constant on B
}

with the pointwise multiplication, that is, the subgroup structure inherited from GX ,
and the topology defined as follows: a subset M ⊆ L̃0(φ,G) is open if and only if

∀f ∈M ∃U ∈ U(G) ∃ε ∈ R>0 :{
h ∈ L̃0(φ,G)

∣∣∣φ({x ∈ X | h(x) /∈ Uf(x)}) < ε
}
⊆ M.

Then the map

ξ : L̃0(φ,G) −→ L0(φ,G), f 7−→
(∨

f−1(g)
)
g∈G
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is an isomorphism of topological groups. Furthermore, for every B ∈ Π(A), denoting
by πB : X → B the associated projection, we observe that

γB(f) = ξ(f ◦ πB)

for all f ∈ GB.

In general—in fact, in most interesting cases—the topological groups resulting
from the construction outlined above will not be Hausdorff, let alone Polish. However,
starting from a standard probability space and a Polish group, one may equivalently
study the topological dynamics of a corresponding Polish group described in the
following remark.

Remark 7.2. Let (Ω, µ) be a standard probability space and let G be a Polish group.
The topological group L̂0(µ,G) consisting of all equivalence classes of µ-measurable
functions from Ω to G up to equality µ-almost everywhere, endowed with the pointwise
multiplication (of representatives of equivalence classes) and the usual topology of
convergence in measure with respect to µ, is Polish [Moo76, Proposition 7]. It is
not difficult to see that the Hausdorff quotient of L̃0(µ,G), that is, the topological
quotient group

L̃0(µ,G)
/⋂

U
(
L̃0(µ,G)

)
is isomorphic to a dense topological subgroup of L̂0(µ,G). Consequently, from
a dynamical perspective, there is no essential difference between the topological
groups L0(µ,G) ∼= L̃0(µ,G) and L̂0(µ,G): their flows are in natural one-to-one
correspondence.

We proceed to studying whirly amenability for groups of measurable maps, which
will be the content of Theorem 7.5. Preparing the proof of Theorem 7.5, we need to
establish some additional notation. To this end, let G be a topological group. If I is
a set, i ∈ I and a ∈ GI\{i}, then we define ηi,a : G→ GI by

ηi,a(g)(j) :=

{
g if j = i,

a(j) otherwise

for all g ∈ G and j ∈ I. Furthermore, if φ is a submeasure on a Boolean algebra A,
then, for any subset H ⊆ RUCB(L0(φ,G)), we let

[H] :=
{
f ◦ γB ◦ ηB,a

∣∣∣ f ∈ H, B ∈ Π(A), B ∈ B, a ∈ GB\{B}
}
.

The following two lemmata are straightforward adaptations of the corresponding
results in [PS17]. We include the proofs for the sake of convenience.

Lemma 7.3 (cf. [PS17], Lemma 4.3). If φ is a submeasure on a Boolean algebra A
and G is a topological group, then, for each H ∈ RUEB(L0(φ,G)),

[H] ∈ RUEB(G).
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Proof. Consider any H ∈ RUEB(L0(φ,G)). Of course, [H] is norm-bounded as the
set H is. In order to prove that [H] is right-uniformly equicontinuous, let ε ∈ R>0.
Since H ∈ RUEB(L0(φ,G)), there exists U ∈ U(L0(φ,G)) such that |f(x)−f(y)| ≤ ε
for all f ∈ H and x, y ∈ L0(φ,G) with xy−1 ∈ U . According to the definition of
the topology of L0(φ,G), we find V ∈ U(G) and ε′ ∈ R>0 such that Nφ(V, ε′) ⊆ U .
We are going to verify that |f ′(x)− f ′(y)| ≤ ε for all f ′ ∈ [H] and all x, y ∈ G with
xy−1 ∈ V . To this end, let f ∈ H, B ∈ Π(A), B ∈ B and a ∈ GB\{B}. Then, for any
x, y ∈ G with xy−1 ∈ V , we observe that

γB(ηB,a(x))γB(ηB,a(y))−1 = γB
(
ηB,a(x)ηB,a(y)−1

)
= γB

(
ηB,e

GB\{B}

(
xy−1

))
∈ γB

(
V B
)
⊆ Nφ(V, ε′)

and therefore |f(γB(ηB,a(x)))− f(γB(ηB,a(y)))| ≤ ε. Hence, [H] ∈ RUEB(G). �

Lemma 7.4 (cf. [PS17], Lemma 4.4). Let φ be a submeasure on a non-zero Boolean
algebra A and let G be a topological group. If (Bi, µi)i∈I is a net in Π(A)× Prob(G)
such that
— ∀B ∈ Π(A)∃i0 ∈ I ∀i ∈ I : i0 ≤ i =⇒ B � Bi,
— ∀g ∈ G∀H ∈ RUEB(G) : supf∈H

∣∣∫ f dµi − ∫ f ◦ λg dµi∣∣·|Bi| −→ 0, as i→ I,

then the net
(
(γBi)∗

(
µ⊗Bii

))
i∈I UEB-converges to invariance over L0(φ,G).

Proof. For each i ∈ I, let us consider the corresponding push-forward Borel probability
measure νi := (γBi)∗

(
µ⊗Bii

)
on L0(φ,G). We will show that (νi)i∈I UEB-converges to

invariance over L0(φ,G). For this, letH ∈ RUEB(L0(φ,G)), A = (Ag)g∈G ∈ L0(φ,G)
and ε ∈ R>0. Note that

B := {Ag | g ∈ G} \ {0} ∈ Π(A)

and put E := {g ∈ G | Ag 6= 0} ∪ {e}. According to Lemma 7.3 and our assumptions,
there exists i0 ∈ I such that, for every i ∈ I with i ≥ i0, we have B � Bi and

∀g ∈ E : supf∈[H]

∣∣∣∣∫ f dµi −
∫
f ◦ λg dµi

∣∣∣∣ ≤ ε
|Bi| . (62)

We claim that

∀i ∈ I, i ≥ i0 : supf∈H

∣∣∣∣∫ f dνi −
∫
f ◦ λA dνi

∣∣∣∣ ≤ ε. (63)

To prove this, let i ∈ I with i ≥ i0. Since B � Bi, we find s ∈ EBi with A = γBi(s).
Let ni := |Bi| and pick an enumeration Bi = {Bij | j < ni}. For each j < ni, let us
define aj ∈ EBi by

aj(B) :=

{
s` if B = Bi` for ` ∈ {0, . . . , j},
e otherwise

for each B ∈ Bi, and let bj := aj�Bi\{Bij} ∈ EBi\{Bij}. Furthermore, let us define
a−1 := e ∈ EBi . For all j < ni and z ∈ GBi\{Bij}, note that λaj ◦ηBij ,z = ηBij ,bjz ◦λsj
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and λaj−1 ◦ ηBij ,z = ηBij ,bjz. Combining these observations with (62) and Fubini’s
theorem, we conclude that∣∣∣∣∫ f ◦λγBi (aj−1) dνi −

∫
f ◦ λγBi (aj) dνi

∣∣∣∣
=

∣∣∣∣∫ (f ◦ λγBi (aj−1) ◦ γBi
)
−
(
f ◦ λγBi (aj) ◦ γBi

)
dµ⊗Bii

∣∣∣∣
=

∣∣∣∣∫ (f ◦ γBi ◦ λaj−1

)
−
(
f ◦ γBi ◦ λaj

)
dµ⊗Bii

∣∣∣∣
=

∣∣∣∣∫ (∫ f ◦ γBi ◦ λaj−1 ◦ ηBij ,z dµi

−
∫
f ◦ γBi ◦ λaj ◦ ηBij ,z dµi

)
dµ
⊗Bi\{Bij}
i (z)

∣∣∣∣
=

∣∣∣∣∫ (∫ f ◦ γBi ◦ ηBij ,bjz dµi −
∫
f ◦ γBi ◦ ηBij ,bjz ◦ λsj dµi

)
dµ
⊗Bi\{Bij}
i (z)

∣∣∣∣
≤
∫ ∣∣∣∣∫ f ◦ γBi ◦ ηBij ,bjz dµi −

∫
f ◦ γBi ◦ ηBij ,bjz ◦ λsj dµi

∣∣∣∣ dµ⊗Bi\{Bij}i (z)

≤
∫

ε
ni
dµ
⊗Bi\{Bij}
i (z) = ε

ni

for all j ∈ {0, . . . , ni − 1} and f ∈ H. For every f ∈ H, it follows that∣∣∣∣∫ f dνi −
∫
f ◦ λA dνi

∣∣∣∣ ≤ ni−1∑
j=0

∣∣∣∣∫ f ◦ λγBi (aj−1) dνi −
∫
f ◦ λγBi (aj) dνi

∣∣∣∣ ≤ ε,

which proves (63) and hence completes the argument. �

We arrive at our fourth and final main result.

Theorem 7.5. Let φ be a submeasure and let G be a topological group. If φ has
covering concentration and G is amenable, then L0(φ,G) is whirly amenable.

Proof. Let φ be defined on the Boolean algebra A. Since the desired conclusion is
trivial if A = {0}, we may and will assume that A 6= {0}. According to Theorem 6.1,
we find a net (Bj , µj)j∈J in Π(A)× Probfin(G) such that
— ∀B ∈ Π(A)∃j0 ∈ J ∀j ∈ J : j0 ≤ j =⇒ B � Bj ,
— ∀g ∈ G∀H ∈ RUEB(G) : supf∈H

∣∣∫ f dµj−∫ f ◦ λg dµj∣∣·|Bj | −→ 0, as j → J .

Suppose that φ has covering concentration. By Remark 5.4, we find (C`)`∈N ∈ Π(A)N

such that, for every ε ∈ R>0,

sup{αX (I,λ,B,φ)(ε) | B ∈ Π(A), C` � B} −→ 0, as `→∞. (64)

Consider the directed set (I,≤I) where I := {(`, j) ∈ N× J | C` � Bj} and

(`0, j0) ≤I (`1, j1) :⇐⇒ `0 ≤ `1, j0 ≤J j1.
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For every (`, j) ∈ I, define B(`,j) := Bj and µ(`,j) := µj . For each i ∈ I, let us consider

νi := (γBi)∗

(
µ⊗Bii

)
∈ Prob(L0(φ,G)).

By Lemma 7.4, the net (νi)i∈I UEB-converges to invariance over L0(φ,G).
Thanks to Theorem 6.5, it remains to show that (νi)i∈I concentrates in L0(φ,G).

For each i ∈ I, we find a finite subset Si ⊆ G and a probability measure σi on the
discrete measurable space Si such that µi equals the push-forward measure of σi
along the map Si → G, g 7→ g. According to (64), Remark 5.2 and Remark 2.2(3),
the net (X (Si, σi,Bi, φ))i∈I constitutes a Lévy net. Thus, by Remark 2.5, it suffices
to verify that the family (γBi)i∈I is uniformly equicontinuous. For this purpose, let
U ∈ U(G) and ε ∈ R>0. For all i ∈ I and g, h ∈ GBi , we have

φ

(∨
x∈G\U

γBi
(
hg−1

)
x

)
= φ

(∨
x∈G\U

∨(
hg−1

)−1
(x)

)
≤ φ

(∨
x∈G\{e}

∨(
hg−1

)−1
(x)

)
= φ

(∨
{B ∈ Bi | g(B) 6= h(B)}

)
= δφ,Bi(g, h),

and therefore

δφ,Bi(g, h) < ε =⇒ γBi(h)γBi(g)−1 = γBi
(
hg−1

)
∈ Nφ(U, ε).

Hence, due to Remark 2.5, the net (νi)i∈I concentrates in L0(φ,G), so that L0(φ,G)
is whirly amenable by Theorem 6.5. �

Corollary 7.6. Let φ be a parabolic or hyperbolic submeasure. If G is an amenable
topological group, then L0(φ,G) is whirly amenable.

Proof. This is an immediate consequence of Theorem 5.6 and Theorem 7.5. �

We conclude with a partial converse of Corollary 7.6.

Proposition 7.7. Let G be a topological group. If φ is an elliptic or parabolic
submeasure and L0(φ,G) is amenable, then G is amenable.

Proof. We generalize an argument from [PS17, Theorem 1.1 (2)=⇒(1)]. Let φ be
defined on the Boolean algebra A. Since φ is not pathological, we find a non-zero
measure µ : A → R such that µ ≤ φ. Define Φ: RUCB(G)→ RUCB(L0(φ,G)) by

Φ(f)(A) := 1
µ(1)

∑
g∈G

f(g)µ(Ag) ,

where f ∈ RUCB(G) and A = (Ag)g∈G ∈ L0(φ,G). To check that Φ is well defined,
let f ∈ RUCB(G). Since

supA∈L0(φ,G) |Φ(f)(A)| = ‖f‖∞,
it follows that Φ(f) ∈ `∞(L0(φ,G)). In order to show that Φ(f) ∈ RUCB(L0(φ,G)),
let ε ∈ R>0. As f ∈ RUCB(G), there exists U ∈ U(G) such that

∀g, h ∈ G : hg−1 ∈ U =⇒ |f(g)− f(h)| ≤ ε
2 .

Consider
ε′ := εµ(1)

4‖f‖∞+1 .
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Then V := Nφ(U, ε′) constitutes a neighborhood of the neutral element in L0(φ,G).
Let A = (Ag)g∈G, B = (Bh)h∈G ∈ L0(φ,G) with BA−1 ∈ V . Then φ(C) < ε′ for

C :=
∨
{Ag ∧Bh | g, h ∈ G, h /∈ Ug} .

Since µ is a measure, we conclude that

Φ(f)(A)− Φ(f)(B) = 1
µ(1)

∑
g,h∈G

(f(g)− f(h))µ(Ag ∧Bh)

= 1
µ(1)

∑
g,h∈G

(f(g)− f(h))µ(Ag ∧Bh ∧ C)

+ 1
µ(1)

∑
g,h∈G

(f(g)− f(h))µ(Ag ∧Bh ∧ ¬C) ,

which, as µ ≤ φ, readily implies that

|Φ(f)(A)− Φ(f)(B)| ≤ 2‖f‖∞ε′
µ(1) + ε

2 ≤ ε .

This shows that Φ(f) ∈ RUCB(L0(φ,G)). Therefore, Φ is well-defined. It is straight-
forward to check that Φ is linear, positive, and unital. Furthermore, if f ∈ RUCB(G)
and g ∈ G, then

Φ(f ◦ λg)(A) = 1
µ(1)

∑
h∈G

f(gh)µ(Ah) = 1
µ(1)

∑
h∈G

f(h)µ
(
Ag−1h

)
= Φ(f)

((
Ag−1h

)
h∈G

)
= Φ(f)

(
γ{1}(g)A

)
=
(

Φ(f) ◦ λγ{1}(g)
)

(A)

for every A = (Ah)h∈G ∈ L0(φ,G), that is, Φ(f ◦λg) = Φ(f)◦λγ{1}(g). Assuming that
L0(φ,G) is amenable and considering a left-invariant mean m : RUCB(L0(φ,G))→ R,
we deduce from the properties of Φ that m ◦ Φ: RUCB(G) → R is a left-invariant
mean, whence G is amenable. �

The subsequent corollary generalizes the main result of [PS17] from non-zero diffuse
measures to arbitrary parabolic submeasures.

Corollary 7.8. Let φ be a parabolic submeasure and let G be a topological group.
Then the following are equivalent.

— G is amenable.
— L0(φ,G) is amenable.
— L0(φ,G) is whirly amenable.

Acknowledgment. We thank Paul Larson for several remarks that helped improve
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